1 | // $Id: subset_generator_test.cc 1392 2008-07-28 19:35:30Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2006, 2007, 2008 Jari Häkkinen, Peter Johansson, Markus Ringnér |
---|
5 | |
---|
6 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "Suite.h" |
---|
25 | |
---|
26 | #include "yat/classifier/BootstrapSampler.h" |
---|
27 | #include "yat/classifier/CrossValidationSampler.h" |
---|
28 | #include "yat/classifier/FeatureSelectorIR.h" |
---|
29 | #include "yat/classifier/Kernel_SEV.h" |
---|
30 | #include "yat/classifier/KernelLookup.h" |
---|
31 | #include "yat/classifier/MatrixLookup.h" |
---|
32 | #include "yat/classifier/PolynomialKernelFunction.h" |
---|
33 | #include "yat/classifier/SubsetGenerator.h" |
---|
34 | #include "yat/statistics/AUC.h" |
---|
35 | #include "yat/utility/Matrix.h" |
---|
36 | |
---|
37 | #include <cassert> |
---|
38 | #include <fstream> |
---|
39 | #include <iostream> |
---|
40 | #include <string> |
---|
41 | |
---|
42 | using namespace theplu::yat; |
---|
43 | |
---|
44 | bool class_count_test(const std::vector<size_t>&, test::Suite&); |
---|
45 | bool sample_count_test(const std::vector<size_t>&, test::Suite&); |
---|
46 | bool test_nested(test::Suite&); |
---|
47 | bool test_cv(test::Suite&); |
---|
48 | bool test_creation(test::Suite&); |
---|
49 | bool test_bootstrap(test::Suite&); |
---|
50 | |
---|
51 | |
---|
52 | int main(int argc, char* argv[]) |
---|
53 | { |
---|
54 | test::Suite suite(argc, argv); |
---|
55 | suite.err() << "testing subset_generator" << std::endl; |
---|
56 | |
---|
57 | test_creation(suite); |
---|
58 | test_nested(suite); |
---|
59 | test_cv(suite); |
---|
60 | |
---|
61 | return suite.return_value(); |
---|
62 | } |
---|
63 | |
---|
64 | |
---|
65 | bool test_creation(test::Suite& suite) |
---|
66 | { |
---|
67 | bool ok=true; |
---|
68 | std::ifstream is(test::filename("data/nm_target_bin.txt").c_str()); |
---|
69 | suite.err() << "loading target " << std::endl; |
---|
70 | classifier::Target target(is); |
---|
71 | is.close(); |
---|
72 | suite.err() << "number of targets: " << target.size() << std::endl; |
---|
73 | suite.err() << "number of classes: " << target.nof_classes() << std::endl; |
---|
74 | is.open(test::filename("data/nm_data_centralized.txt").c_str()); |
---|
75 | suite.err() << "loading data " << std::endl; |
---|
76 | utility::Matrix m(is); |
---|
77 | is.close(); |
---|
78 | classifier::MatrixLookup data(m); |
---|
79 | suite.err() << "number of samples: " << data.columns() << std::endl; |
---|
80 | suite.err() << "number of features: " << data.rows() << std::endl; |
---|
81 | assert(data.columns()==target.size()); |
---|
82 | |
---|
83 | suite.err() << "building kernel" << std::endl; |
---|
84 | classifier::PolynomialKernelFunction kf(1); |
---|
85 | classifier::Kernel_SEV kernel_core(data,kf); |
---|
86 | classifier::KernelLookup kernel(kernel_core); |
---|
87 | suite.err() << "building Sampler" << std::endl; |
---|
88 | classifier::CrossValidationSampler sampler(target, 30, 3); |
---|
89 | |
---|
90 | statistics::AUC score; |
---|
91 | classifier::FeatureSelectorIR fs(score, 96, 0); |
---|
92 | suite.err() << "building SubsetGenerator" << std::endl; |
---|
93 | classifier::SubsetGenerator<classifier::MatrixLookup> |
---|
94 | subset_data(sampler, data, fs); |
---|
95 | classifier::SubsetGenerator<classifier::KernelLookup> |
---|
96 | subset_kernel(sampler, kernel,fs); |
---|
97 | return ok; |
---|
98 | } |
---|
99 | |
---|
100 | bool test_nested(test::Suite& suite) |
---|
101 | { |
---|
102 | bool ok=true; |
---|
103 | // |
---|
104 | // Test two nested CrossSplitters |
---|
105 | // |
---|
106 | |
---|
107 | suite.err() << "\ntesting two nested crossplitters" << std::endl; |
---|
108 | std::vector<std::string> label(9); |
---|
109 | label[0]=label[1]=label[2]="0"; |
---|
110 | label[3]=label[4]=label[5]="1"; |
---|
111 | label[6]=label[7]=label[8]="2"; |
---|
112 | |
---|
113 | classifier::Target target(label); |
---|
114 | utility::Matrix raw_data2(2,9); |
---|
115 | for(size_t i=0;i<raw_data2.rows();i++) |
---|
116 | for(size_t j=0;j<raw_data2.columns();j++) |
---|
117 | raw_data2(i,j)=i*10+10+j+1; |
---|
118 | |
---|
119 | classifier::MatrixLookup data2(raw_data2); |
---|
120 | classifier::CrossValidationSampler cv2(target,3,3); |
---|
121 | classifier::SubsetGenerator<classifier::MatrixLookup> cv_test(cv2,data2); |
---|
122 | |
---|
123 | std::vector<size_t> sample_count(10,0); |
---|
124 | std::vector<size_t> test_sample_count(9,0); |
---|
125 | std::vector<size_t> test_class_count(3,0); |
---|
126 | std::vector<double> test_value1(4,0); |
---|
127 | std::vector<double> test_value2(4,0); |
---|
128 | std::vector<double> t_value(4,0); |
---|
129 | std::vector<double> v_value(4,0); |
---|
130 | for(unsigned long k=0;k<cv_test.size();k++) { |
---|
131 | |
---|
132 | const classifier::MatrixLookup& tv_view=cv_test.training_data(k); |
---|
133 | const classifier::Target& tv_target=cv_test.training_target(k); |
---|
134 | const utility::Index& tv_index=cv_test.training_index(k); |
---|
135 | const classifier::MatrixLookup& test_view=cv_test.validation_data(k); |
---|
136 | const classifier::Target& test_target=cv_test.validation_target(k); |
---|
137 | const utility::Index& test_index=cv_test.validation_index(k); |
---|
138 | |
---|
139 | for (size_t i=0; i<test_index.size(); i++) { |
---|
140 | assert(test_index[i]<sample_count.size()); |
---|
141 | test_sample_count[test_index[i]]++; |
---|
142 | test_class_count[target(test_index[i])]++; |
---|
143 | test_value1[0]+=test_view(0,i); |
---|
144 | test_value2[0]+=test_view(1,i); |
---|
145 | test_value1[test_target(i)+1]+=test_view(0,i); |
---|
146 | test_value2[test_target(i)+1]+=test_view(1,i); |
---|
147 | if(test_target(i)!=target(test_index[i])) { |
---|
148 | ok=false; |
---|
149 | suite.err() << "ERROR: incorrect mapping of test indices" << std:: endl; |
---|
150 | } |
---|
151 | } |
---|
152 | |
---|
153 | classifier::CrossValidationSampler sampler_training(tv_target,2,2); |
---|
154 | classifier::SubsetGenerator<classifier::MatrixLookup> |
---|
155 | cv_training(sampler_training,tv_view); |
---|
156 | std::vector<size_t> v_sample_count(6,0); |
---|
157 | std::vector<size_t> t_sample_count(6,0); |
---|
158 | std::vector<size_t> v_class_count(3,0); |
---|
159 | std::vector<size_t> t_class_count(3,0); |
---|
160 | std::vector<size_t> t_class_count2(3,0); |
---|
161 | for(unsigned long l=0;l<cv_training.size();l++) { |
---|
162 | const classifier::MatrixLookup& t_view=cv_training.training_data(l); |
---|
163 | const classifier::Target& t_target=cv_training.training_target(l); |
---|
164 | const utility::Index& t_index=cv_training.training_index(l); |
---|
165 | const classifier::MatrixLookup& v_view=cv_training.validation_data(l); |
---|
166 | const classifier::Target& v_target=cv_training.validation_target(l); |
---|
167 | const utility::Index& v_index=cv_training.validation_index(l); |
---|
168 | |
---|
169 | if (test_index.size()+tv_index.size()!=target.size() |
---|
170 | || t_index.size()+v_index.size() != tv_target.size() |
---|
171 | || test_index.size()+v_index.size()+t_index.size() != target.size()){ |
---|
172 | ok = false; |
---|
173 | suite.err() << "ERROR: size of training samples, validation samples " |
---|
174 | << "and test samples in is invalid." |
---|
175 | << std::endl; |
---|
176 | } |
---|
177 | if (test_index.size()!=3 || tv_index.size()!=6 || t_index.size()!=3 || |
---|
178 | v_index.size()!=3){ |
---|
179 | ok = false; |
---|
180 | suite.err() << "ERROR: size of training, validation, and test samples" |
---|
181 | << " is invalid." |
---|
182 | << " Expected sizes to be 3" << std::endl; |
---|
183 | } |
---|
184 | |
---|
185 | std::vector<size_t> tv_sample_count(6,0); |
---|
186 | for (size_t i=0; i<t_index.size(); i++) { |
---|
187 | assert(t_index[i]<t_sample_count.size()); |
---|
188 | tv_sample_count[t_index[i]]++; |
---|
189 | t_sample_count[t_index[i]]++; |
---|
190 | t_class_count[t_target(i)]++; |
---|
191 | t_class_count2[tv_target(t_index[i])]++; |
---|
192 | t_value[0]+=t_view(0,i); |
---|
193 | t_value[t_target(i)+1]+=t_view(0,i); |
---|
194 | } |
---|
195 | for (size_t i=0; i<v_index.size(); i++) { |
---|
196 | assert(v_index[i]<v_sample_count.size()); |
---|
197 | tv_sample_count[v_index[i]]++; |
---|
198 | v_sample_count[v_index[i]]++; |
---|
199 | v_class_count[v_target(i)]++; |
---|
200 | v_value[0]+=v_view(0,i); |
---|
201 | v_value[v_target(i)+1]+=v_view(0,i); |
---|
202 | } |
---|
203 | |
---|
204 | ok = ok && sample_count_test(tv_sample_count,suite); |
---|
205 | |
---|
206 | } |
---|
207 | ok = ok && sample_count_test(v_sample_count,suite); |
---|
208 | ok = ok && sample_count_test(t_sample_count,suite); |
---|
209 | |
---|
210 | ok = ok && class_count_test(t_class_count,suite); |
---|
211 | ok = ok && class_count_test(t_class_count2,suite); |
---|
212 | ok = ok && class_count_test(v_class_count,suite); |
---|
213 | |
---|
214 | |
---|
215 | } |
---|
216 | ok = ok && sample_count_test(test_sample_count,suite); |
---|
217 | ok = ok && class_count_test(test_class_count,suite); |
---|
218 | |
---|
219 | if(test_value1[0]!=135 || test_value1[1]!=36 || test_value1[2]!=45 || |
---|
220 | test_value1[3]!=54) { |
---|
221 | ok=false; |
---|
222 | suite.err() << "ERROR: incorrect sums of test values in row 1" |
---|
223 | << " found: " << test_value1[0] << ", " << test_value1[1] |
---|
224 | << ", " << test_value1[2] << " and " << test_value1[3] |
---|
225 | << std::endl; |
---|
226 | } |
---|
227 | |
---|
228 | |
---|
229 | if(test_value2[0]!=225 || test_value2[1]!=66 || test_value2[2]!=75 || |
---|
230 | test_value2[3]!=84) { |
---|
231 | ok=false; |
---|
232 | suite.err() << "ERROR: incorrect sums of test values in row 2" |
---|
233 | << " found: " << test_value2[0] << ", " << test_value2[1] |
---|
234 | << ", " << test_value2[2] << " and " << test_value2[3] |
---|
235 | << std::endl; |
---|
236 | } |
---|
237 | |
---|
238 | if(t_value[0]!=270 || t_value[1]!=72 || t_value[2]!=90 || t_value[3]!=108) { |
---|
239 | ok=false; |
---|
240 | suite.err() << "ERROR: incorrect sums of training values in row 1" |
---|
241 | << " found: " << t_value[0] << ", " << t_value[1] |
---|
242 | << ", " << t_value[2] << " and " << t_value[3] |
---|
243 | << std::endl; |
---|
244 | } |
---|
245 | |
---|
246 | if(v_value[0]!=270 || v_value[1]!=72 || v_value[2]!=90 || v_value[3]!=108) { |
---|
247 | ok=false; |
---|
248 | suite.err() << "ERROR: incorrect sums of validation values in row 1" |
---|
249 | << " found: " << v_value[0] << ", " << v_value[1] |
---|
250 | << ", " << v_value[2] << " and " << v_value[3] |
---|
251 | << std::endl; |
---|
252 | } |
---|
253 | return ok; |
---|
254 | } |
---|
255 | |
---|
256 | bool class_count_test(const std::vector<size_t>& class_count, |
---|
257 | test::Suite& suite) |
---|
258 | { |
---|
259 | bool ok=true; |
---|
260 | for (size_t i=0; i<class_count.size(); i++) |
---|
261 | if (class_count[i]==0){ |
---|
262 | ok = false; |
---|
263 | suite.err() << "ERROR: class " << i << " was not in set." |
---|
264 | << " Expected at least one sample from each class." |
---|
265 | << std::endl; |
---|
266 | } |
---|
267 | return ok; |
---|
268 | } |
---|
269 | |
---|
270 | bool sample_count_test(const std::vector<size_t>& sample_count, |
---|
271 | test::Suite& suite) |
---|
272 | { |
---|
273 | bool ok=true; |
---|
274 | for (size_t i=0; i<sample_count.size(); i++){ |
---|
275 | if (sample_count[i]!=1){ |
---|
276 | ok = false; |
---|
277 | suite.err() << "ERROR: sample " << i << " was in a group " << sample_count[i] |
---|
278 | << " times." << " Expected to be 1 time" << std::endl; |
---|
279 | } |
---|
280 | } |
---|
281 | return ok; |
---|
282 | } |
---|
283 | |
---|
284 | |
---|
285 | bool test_bootstrap(test::Suite& suite) |
---|
286 | { |
---|
287 | bool ok=true; |
---|
288 | std::vector<std::string> label(10,"default"); |
---|
289 | label[2]=label[7]="white"; |
---|
290 | label[4]=label[5]="black"; |
---|
291 | label[6]=label[3]="green"; |
---|
292 | label[8]=label[9]="red"; |
---|
293 | |
---|
294 | classifier::Target target(label); |
---|
295 | utility::Matrix raw_data(10,10); |
---|
296 | classifier::MatrixLookup data(raw_data); |
---|
297 | classifier::BootstrapSampler cv(target,3); |
---|
298 | return ok; |
---|
299 | } |
---|
300 | |
---|
301 | |
---|
302 | bool test_cv(test::Suite& suite) |
---|
303 | { |
---|
304 | bool ok=true; |
---|
305 | std::vector<std::string> label(10,"default"); |
---|
306 | label[2]=label[7]="white"; |
---|
307 | label[4]=label[5]="black"; |
---|
308 | label[6]=label[3]="green"; |
---|
309 | label[8]=label[9]="red"; |
---|
310 | |
---|
311 | classifier::Target target(label); |
---|
312 | utility::Matrix raw_data(10,10); |
---|
313 | classifier::MatrixLookup data(raw_data); |
---|
314 | classifier::CrossValidationSampler cv(target,3,3); |
---|
315 | |
---|
316 | std::vector<size_t> sample_count(10,0); |
---|
317 | for (size_t j=0; j<cv.size(); ++j){ |
---|
318 | std::vector<size_t> class_count(5,0); |
---|
319 | assert(j<cv.size()); |
---|
320 | if (cv.training_index(j).size()+cv.validation_index(j).size()!= |
---|
321 | target.size()){ |
---|
322 | ok = false; |
---|
323 | suite.err() << "ERROR: size of training samples plus " |
---|
324 | << "size of validation samples is invalid." << std::endl; |
---|
325 | } |
---|
326 | if (cv.validation_index(j).size()!=3 && cv.validation_index(j).size()!=4){ |
---|
327 | ok = false; |
---|
328 | suite.err() << "ERROR: size of validation samples is invalid." |
---|
329 | << "expected size to be 3 or 4" << std::endl; |
---|
330 | } |
---|
331 | for (size_t i=0; i<cv.validation_index(j).size(); i++) { |
---|
332 | assert(cv.validation_index(j)[i]<sample_count.size()); |
---|
333 | sample_count[cv.validation_index(j)[i]]++; |
---|
334 | } |
---|
335 | for (size_t i=0; i<cv.training_index(j).size(); i++) { |
---|
336 | class_count[target(cv.training_index(j)[i])]++; |
---|
337 | } |
---|
338 | ok = ok && class_count_test(class_count,suite); |
---|
339 | } |
---|
340 | ok = ok && sample_count_test(sample_count,suite); |
---|
341 | |
---|
342 | return ok; |
---|
343 | } |
---|