- Timestamp:
- Jan 8, 2009, 6:17:44 PM (12 years ago)
- Location:
- trunk/test
- Files:
-
- 5 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/test/averager_test.cc
r1664 r1704 5 5 Copyright (C) 2006 Jari Häkkinen, Peter Johansson, Markus Ringnér 6 6 Copyright (C) 2007, 2008 Jari Häkkinen, Peter Johansson 7 Copyright (C) 2009 Peter Johansson 7 8 8 9 This file is part of the yat library, http://dev.thep.lu.se/yat … … 99 100 100 101 a.add(3,5); 101 if (std::abs(a.standard_error()-sqrt(a.variance()/a.n()))> 102 std::numeric_limits<double>().round_error() ){ 102 if (!suite.equal_sqrt(a.standard_error(), sqrt(a.variance()/a.n()),1)) { 103 103 suite.add(false); 104 104 suite.err() << "error: standard_error\n"; … … 185 185 for (int i=0; i<10; i++) 186 186 ap.add(static_cast<double>(i),i); 187 if ( std::abs(ap.correlation()-1)>tol){187 if (!suite.equal(ap.correlation(),1,tol)){ 188 188 suite.add(false); 189 189 suite.err() << "correlation: " << ap.correlation() << std::endl; … … 191 191 << std::endl; 192 192 } 193 if ( ap.x_averager().variance()!=ap.covariance()){193 if (!suite.equal(ap.x_averager().variance(),ap.covariance())) { 194 194 suite.add(false); 195 195 suite.err() << "error: covariance of identical vectors should equal to variance" … … 201 201 for (int i=0; i<8; i++) 202 202 ap.add(static_cast<double>(i),i,-1); 203 if ( std::abs(ap.correlation()-1)>tol) {203 if (!suite.equal(ap.correlation(),1, tol)) { 204 204 suite.add(false); 205 205 suite.err() << "correlation after removal of data: " << ap.correlation() … … 253 253 Suite& suite) 254 254 { 255 // std::cout << (a.n()==b.n()) << std::endl;256 // std::cout << (a.mean()==b.mean()) << std::endl;257 // std::cout << (std::abs(a.variance()-b.variance()<1e-15)) << std::endl;258 255 return (a.n()==b.n() && suite.equal(a.mean(),b.mean(),tol) && 259 256 suite.equal(a.variance(),b.variance(),tol)); … … 305 302 { 306 303 bool ok = true; 307 if ( std::abs(a.covariance()-b.covariance())>tol){304 if (!suite.equal(a.covariance(), b.covariance(), tol)) { 308 305 suite.add(false); 309 306 suite.err() << "error covariance: " << a.covariance() << "\t" 310 307 << b.covariance() << std::endl; 311 308 } 312 if ( std::abs(a.correlation()-b.correlation())>tol) {309 if ( !suite.equal(a.correlation(),b.correlation(), tol)) { 313 310 suite.add(false); 314 311 suite.err() << "error correlation" << std::endl; … … 321 318 { 322 319 bool ok = true; 323 if ( std::abs(a.covariance()-b.covariance())>tol){320 if (!suite.equal(a.covariance(), b.covariance(), tol) ) { 324 321 suite.add(false); 325 322 suite.err() << "error covariance: " << a.covariance() << "\t" 326 323 << b.covariance() << std::endl; 327 324 } 328 if ( std::abs(a.correlation()-b.correlation())>tol) {325 if ( !suite.equal(a.correlation(),b.correlation(), tol) ) { 329 326 suite.add(false); 330 327 suite.err() << "error correlation" << std::endl; -
trunk/test/distance_test.cc
r1665 r1704 3 3 /* 4 4 Copyright (C) 2007, 2008 Jari Häkkinen, Peter Johansson, Markus Ringnér 5 Copyright (C) 2009 Peter Johansson 5 6 6 7 This file is part of the yat library, http://dev.thep.lu.se/yat … … 83 84 b(2) = 1; 84 85 85 double tolerance=1e-4;86 86 statistics::EuclideanDistance eucl_dist; 87 87 suite.err() << "testing EuclideanDistance" << std::endl; … … 135 135 sb[2] = 1; 136 136 137 double tolerance=1e-4; 137 138 dist=eucl_dist(sa.begin(),sa.end(),sb.begin()); 138 if( std::abs(dist-2.23607)>tolerance) {139 if(!suite.equal_fix(dist, 2.23607,tolerance)) { 139 140 suite.err() << "Error in distance for std::vector " << std::endl; 140 141 suite.add(false); … … 145 146 std::copy(sa.begin(),sa.end(),std::back_inserter<std::list<double> >(la)); 146 147 dist=eucl_dist(la.begin(),la.end(),sb.begin()); 147 if( std::abs(dist-2.23607)>tolerance) {148 if(!suite.equal_fix(dist, 2.23607, tolerance) ) { 148 149 suite.err() << "Error in distance for std::list " << std::endl; 149 150 suite.add(false); … … 245 246 utility::Matrix x = data(); 246 247 double self = dist(x.begin(), x.end(), x.begin()); 247 if (! (std::abs(self) <= N*std::numeric_limits<double>().epsilon()) ){248 if (!suite.equal_fix(self,0, N*std::numeric_limits<double>().epsilon()) ) { 248 249 suite.err() << "error: self distance is " << self << "\n" 249 250 << "supposed to be zero.\n"; -
trunk/test/feature_selection_test.cc
r1584 r1704 4 4 Copyright (C) 2006 Jari Häkkinen, Peter Johansson 5 5 Copyright (C) 2007 Jari Häkkinen, Peter Johansson, Markus Ringnér 6 Copyright (C) 2008 Peter Johansson6 Copyright (C) 2008, 2009 Peter Johansson 7 7 8 8 This file is part of the yat library, http://dev.thep.lu.se/yat … … 88 88 89 89 classifier::DataLookupWeighted1D row(dataviewweighted,best_feature,true); 90 double score_diff=std::abs(snr.score(targets,row)-1.47804); 91 if(score_diff>0.00001) { 90 if(!suite.equal_fix(snr.score(targets, row), 1.47804, 0.00001) ) { 92 91 suite.err() << "\nERROR: Best score not what expected!\n" << std::endl; 93 92 suite.add(false); -
trunk/test/kernel_test.cc
r1487 r1704 5 5 Copyright (C) 2006 Jari Häkkinen, Peter Johansson, Markus Ringnér 6 6 Copyright (C) 2007, 2008 Jari Häkkinen, Peter Johansson 7 Copyright (C) 2009 Peter Johansson 7 8 8 9 This file is part of the yat library, http://dev.thep.lu.se/yat … … 140 141 for(size_t i=0;i<control.rows();i++) 141 142 for(size_t j=0;j<control.columns();j++) 142 if ( std::abs(kernel(i,j)-control(i,j))>error_bound){143 if (!suite.equal_fix(kernel(i,j),control(i,j), error_bound) ){ 143 144 suite.err() << "ERROR: comparing kernel(" << i << "," << j << "): " 144 145 << kernel(i,j) … … 184 185 for(size_t i=0;i<control.rows();i++) 185 186 for(size_t j=0;j<control.columns();j++) 186 if ( std::abs(kernel(i,j)-control(i,j))>error_bound){187 if (!suite.equal_fix(kernel(i,j), control(i,j), error_bound) ){ 187 188 suite.err() << "ERROR: comparing kernel(" << i << "," << j << "): " 188 189 << kernel(i,j) -
trunk/test/kolmogorov_smirnov_test.cc
r1701 r1704 107 107 double p_correct = 0.2; 108 108 double margin=10*std::sqrt(p_correct*(1-p_correct)/n); 109 if ( std::abs(p-p_correct)>margin) {109 if (!suite.equal_fix(p, p_correct, margin) ) { 110 110 suite.add(false); 111 111 suite.err() << "Error: p = " << p << "\n" … … 132 132 double margin = 5 * a.standard_error(); 133 133 double p_approx = ks.p_value(); 134 if ( std::abs(a.mean()-p_approx)>margin) {134 if (!suite.equal_fix(a.mean(), p_approx, margin) ) { 135 135 suite.add(false); 136 136 suite.err() << "Error: unexpected large deviation between p_values\n"
Note: See TracChangeset
for help on using the changeset viewer.