Ignore:
Timestamp:
Jan 15, 2009, 5:57:36 PM (12 years ago)
Author:
Jari Häkkinen
Message:

Addresses #464. Weight zero will kill NaNs? and Infs.

File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/yat/utility/WeNNI.h

    r1487 r1725  
    1010  Copyright (C) 2007 Jari Häkkinen, Peter Johansson
    1111  Copyright (C) 2008 Peter Johansson
     12  Copyright (C) 2009 Jari Häkkinen
    1213
    1314  This file is part of the yat library, http://dev.thep.lu.se/yat
     
    3637namespace utility {
    3738
    38   ///
    39   /// @brief Weighted Nearest Neighbour Imputation
    40   ///
    41   /// WeNNI is a continuous weights generalization of the (binary
    42   /// weights) kNNI algorithm presented by Troyanskaya et al. A
    43   /// reference to this paper is found in the NNI document referred to
    44   /// in the NNI class documentation. The NNI document also describes
    45   /// WeNNI in depth.
    46   ///
    47   /// @see NNI and kNNI
    48   ///
     39  /**
     40     \brief Weighted Nearest Neighbour Imputation
     41
     42     WeNNI is a continuous weights generalization of the (binary
     43     weights) kNNI algorithm presented by Troyanskaya et al. A
     44     reference to this paper is found in the NNI document referred to
     45     in the NNI class documentation. The NNI document also describes
     46     WeNNI in depth.
     47
     48     \note Missing values should be represented with a zero
     49     weight. WeNNI will treat the corresponding data values as zero,
     50     i.e., this implies that NaNs and Infs with zero weight will not
     51     have any impact on calculations.a
     52
     53     \see NNI and kNNI
     54  */
    4955  class WeNNI : public NNI
    5056  {
Note: See TracChangeset for help on using the changeset viewer.