Changeset 1065
- Timestamp:
- May 14, 2009, 12:28:59 PM (14 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
plugins/base2/net.sf.basedb.normalizers/trunk/README
r1064 r1065 50 50 == qQuantile normalization == 51 51 52 qQN geometric mean non-logged values! 53 qQN must have positive numbers! 54 55 The assays are normed against a selectable sub-set of the assays 56 ... If a probe has no well-defined measurement (i.e., no assay in 57 the reference has a well defined value for a probe) it is simply 58 ignored from the target distribution. 59 60 Ja, jag tankte att man far justera q till maximalt antal icke nan ... 61 men som sagt an sa lange ar q==100. 62 63 Den begränsning som finns nu är att det måste finnas lagom många 64 väldefinierade mätvärden per assay (några hundra per assay) annars 65 kraschar nog programmet. Jag kommer att lösa detta genom att välja 66 antalet bins i distributionsberäkningen som #bins=max(100,N_i/10) 67 i=1...#assays och kräva att #bins är minst 10. Kravet är alltså att 68 varje assay måste ha minst 100 väldefinierade punkter. Om inte kravet 69 är uppfyllt stannar programmet med ett någorlunda trevligt meddelande. 70 71 In q-quantile normalization each assay data is sorted in ascending 72 expression value order and added to a matrix as columns. The matrix 73 rows will contain mixed probes (also known as reporters or genes) 74 decided by their rank. For each row in the matrix, the expression 75 values are replaced with the row average value. Finally, each assay is 76 reordered into its original order to retain a standard expression 77 matrix were each row represents one probe. Assays are not mixed. 78 79 Background subtraction and proper filtration should be done on the 80 bioassay set before running this plug-in. The bioassay set must not 81 contain any missing values. 52 Write me. 82 53 83 54 The qQuantile normalization is inspired by the 'Cubic Spline'
Note: See TracChangeset
for help on using the changeset viewer.