source: branches/0.4-stable/yat/regression/MultiDimensionalWeighted.cc @ 1392

Last change on this file since 1392 was 1392, checked in by Peter, 15 years ago

trac has moved

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 3.2 KB
Line 
1// $Id: MultiDimensionalWeighted.cc 1392 2008-07-28 19:35:30Z peter $
2
3/*
4  Copyright (C) 2006, 2007, 2008 Jari Häkkinen, Peter Johansson
5
6  This file is part of the yat library, http://dev.thep.lu.se/yat
7
8  The yat library is free software; you can redistribute it and/or
9  modify it under the terms of the GNU General Public License as
10  published by the Free Software Foundation; either version 2 of the
11  License, or (at your option) any later version.
12
13  The yat library is distributed in the hope that it will be useful,
14  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  General Public License for more details.
17
18  You should have received a copy of the GNU General Public License
19  along with this program; if not, write to the Free Software
20  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21  02111-1307, USA.
22*/
23
24#include "MultiDimensionalWeighted.h"
25#include "yat/statistics/AveragerWeighted.h"
26#include "yat/utility/Matrix.h"
27#include "yat/utility/Vector.h"
28
29#include <cassert>
30
31namespace theplu {
32namespace yat {
33namespace regression {
34
35  MultiDimensionalWeighted::MultiDimensionalWeighted(void)
36    : chisquare_(0), work_(NULL)
37  {
38  }
39
40  MultiDimensionalWeighted::~MultiDimensionalWeighted(void)
41  {
42    if (work_)
43      gsl_multifit_linear_free(work_);
44  }
45
46
47  double MultiDimensionalWeighted::chisq() const
48  {
49    return chisquare_;
50  }
51
52
53  void MultiDimensionalWeighted::fit(const utility::Matrix& x, 
54                                     const utility::VectorBase& y,
55                                     const utility::VectorBase& w)
56  {
57    assert(y.size()==w.size());
58    assert(x.rows()==y.size());
59
60    covariance_.resize(x.columns(),x.columns());
61    fit_parameters_ = utility::Vector(x.columns());
62    if (work_)
63      gsl_multifit_linear_free(work_);
64    if (!(work_=gsl_multifit_linear_alloc(x.rows(),fit_parameters_.size())))
65      throw utility::GSL_error("MultiDimensionalWeighted::fit failed to allocate memory");
66    int status = gsl_multifit_wlinear(x.gsl_matrix_p(), w.gsl_vector_p(),
67                                      y.gsl_vector_p(), 
68                                      fit_parameters_.gsl_vector_p(),
69                                      covariance_.gsl_matrix_p(), &chisquare_,
70                                      work_);
71    if (status)
72      throw utility::GSL_error(std::string("MultiDimensionalWeighted::fit",
73                                           status));
74
75    statistics::AveragerWeighted aw;
76    add(aw, y.begin(), y.end(), w.begin());
77    s2_ = chisquare_ / (aw.n()-fit_parameters_.size());
78    covariance_ *= s2_;
79  }
80
81
82  const utility::Vector& MultiDimensionalWeighted::fit_parameters(void) const
83  {
84    return fit_parameters_;
85  }
86
87
88  double MultiDimensionalWeighted::predict(const utility::VectorBase& x) const
89  {
90    assert(x.size()==fit_parameters_.size());
91    return fit_parameters_ * x;
92  }
93
94
95  double MultiDimensionalWeighted::prediction_error2(const utility::VectorBase& x,
96                                                     const double w) const
97  {
98    return standard_error2(x) + s2(w);
99  }
100
101
102  double MultiDimensionalWeighted::s2(const double w) const
103  {
104    return s2_/w;
105  }
106
107
108  double 
109  MultiDimensionalWeighted::standard_error2(const utility::VectorBase& x) const
110  {
111    double c = 0;
112    for (size_t i=0; i<x.size(); ++i){
113      c += covariance_(i,i)*x(i)*x(i);
114      for (size_t j=i+1; j<x.size(); ++j)
115        c += 2*covariance_(i,j)*x(i)*x(j);
116    }
117    return c;
118  }
119
120}}} // of namespaces regression, yat, and theplu
Note: See TracBrowser for help on using the repository browser.