1 | // $Id: regression.cc 2811 2012-08-16 14:06:05Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2005, 2006, 2007, 2008 Jari Häkkinen, Peter Johansson |
---|
5 | Copyright (C) 2009 Peter Johansson |
---|
6 | |
---|
7 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
8 | |
---|
9 | The yat library is free software; you can redistribute it and/or |
---|
10 | modify it under the terms of the GNU General Public License as |
---|
11 | published by the Free Software Foundation; either version 3 of the |
---|
12 | License, or (at your option) any later version. |
---|
13 | |
---|
14 | The yat library is distributed in the hope that it will be useful, |
---|
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License |
---|
20 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
21 | */ |
---|
22 | |
---|
23 | #include "Suite.h" |
---|
24 | |
---|
25 | #include "yat/regression/KernelBox.h" |
---|
26 | #include "yat/regression/Linear.h" |
---|
27 | #include "yat/regression/LinearWeighted.h" |
---|
28 | #include "yat/regression/Local.h" |
---|
29 | #include "yat/regression/Naive.h" |
---|
30 | #include "yat/regression/NaiveWeighted.h" |
---|
31 | #include "yat/regression/Polynomial.h" |
---|
32 | #include "yat/regression/PolynomialWeighted.h" |
---|
33 | #include "yat/utility/Matrix.h" |
---|
34 | #include "yat/utility/Vector.h" |
---|
35 | |
---|
36 | #include <cmath> |
---|
37 | |
---|
38 | #include <fstream> |
---|
39 | #include <iostream> |
---|
40 | |
---|
41 | |
---|
42 | using namespace theplu::yat; |
---|
43 | |
---|
44 | void equal(regression::OneDimensional&, regression::OneDimensionalWeighted&, |
---|
45 | test::Suite&); |
---|
46 | |
---|
47 | void multidim(test::Suite& suite); |
---|
48 | |
---|
49 | void unity_weights(regression::OneDimensional&, |
---|
50 | regression::OneDimensionalWeighted&, |
---|
51 | const utility::Vector&, const utility::Vector&, |
---|
52 | test::Suite&); |
---|
53 | |
---|
54 | void rescale_weights(regression::OneDimensionalWeighted&, |
---|
55 | const utility::Vector&, const utility::Vector&, |
---|
56 | test::Suite&); |
---|
57 | |
---|
58 | void zero_weights(regression::OneDimensionalWeighted&, |
---|
59 | const utility::Vector&, const utility::Vector&, |
---|
60 | test::Suite&); |
---|
61 | |
---|
62 | |
---|
63 | bool Local_test(regression::OneDimensionalWeighted&, |
---|
64 | regression::Kernel&, test::Suite&); |
---|
65 | |
---|
66 | int main(int argc, char* argv[]) |
---|
67 | { |
---|
68 | test::Suite suite(argc, argv); |
---|
69 | |
---|
70 | suite.err() << " testing regression" << std::endl; |
---|
71 | |
---|
72 | // test data for Linear and Naive (Weighted and non-weighted) |
---|
73 | utility::Vector x(4); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; |
---|
74 | utility::Vector y(4); y(0)=12; y(1)=11; y(2)=14; y(3)=13; |
---|
75 | utility::Vector w(4); w(0)=0.1; w(1)=0.2; w(2)=0.3; w(3)=0.4; |
---|
76 | |
---|
77 | // Comparing linear and polynomial(1) |
---|
78 | regression::Linear linear; |
---|
79 | linear.fit(x,y); |
---|
80 | regression::Polynomial polynomial(1); |
---|
81 | polynomial.fit(x,y); |
---|
82 | if ( !suite.equal(linear.beta(),polynomial.fit_parameters()(1), 1000) ){ |
---|
83 | suite.err() << "error: beta and fit_parameters(1) not equal" << std::endl; |
---|
84 | suite.err() << " beta = " << linear.beta() << std::endl; |
---|
85 | suite.err() << " fit_parameters(1) = " |
---|
86 | << polynomial.fit_parameters()(1) << std::endl; |
---|
87 | suite.add(false); |
---|
88 | } |
---|
89 | if (!suite.equal(polynomial.fit_parameters()(0), |
---|
90 | linear.alpha()-linear.beta()*1985, 10000)){ |
---|
91 | suite.err() << "error: fit_parameters(0) = " |
---|
92 | << polynomial.fit_parameters()(0)<< std::endl; |
---|
93 | suite.err() << "error: alpha-beta*m_x = " |
---|
94 | << linear.alpha()-linear.beta()*1985 << std::endl; |
---|
95 | suite.add(false); |
---|
96 | } |
---|
97 | if ( !suite.equal(polynomial.chisq(), linear.chisq(), 100) ){ |
---|
98 | suite.err() << "error: chisq not same in linear and polynomial(1)" |
---|
99 | << std::endl; |
---|
100 | suite.add(false); |
---|
101 | } |
---|
102 | if ( !suite.equal(polynomial.predict(1.0),linear.predict(1.0), 1000) ){ |
---|
103 | suite.err() << "error: predict not same in linear and polynomial(1)" |
---|
104 | << std::endl; |
---|
105 | suite.add(false); |
---|
106 | } |
---|
107 | if (!suite.equal(polynomial.standard_error2(1985), |
---|
108 | linear.standard_error2(1985), 100000)){ |
---|
109 | suite.err() << "error: standard_error not same in linear and polynomial(1)" |
---|
110 | << "\n polynomial: " << polynomial.standard_error2(1985) |
---|
111 | << "\n linear: " << linear.standard_error2(1985) |
---|
112 | << std::endl; |
---|
113 | suite.add(false); |
---|
114 | } |
---|
115 | |
---|
116 | suite.err() << " testing regression::LinearWeighted" << std::endl; |
---|
117 | regression::LinearWeighted linear_w; |
---|
118 | equal(linear, linear_w, suite); |
---|
119 | linear_w.fit(x,y,w); |
---|
120 | double y_predicted = linear_w.predict(1990); |
---|
121 | double y_predicted_err = linear_w.prediction_error2(1990); |
---|
122 | if (!suite.equal(y_predicted,12.8) ){ |
---|
123 | suite.err() << "error: cannot reproduce fit." << std::endl; |
---|
124 | suite.err() << "predicted value: " << y_predicted << " expected 12.8" |
---|
125 | << std::endl; |
---|
126 | suite.add(false); |
---|
127 | } |
---|
128 | |
---|
129 | // Comparing LinearWeighted and PolynomialWeighted(1) |
---|
130 | suite.err() << " comparing LinearWeighted and PolynomialWeighted(1)" |
---|
131 | << std::endl; |
---|
132 | linear_w.fit(x,y,w); |
---|
133 | regression::PolynomialWeighted polynomial_w(1); |
---|
134 | polynomial_w.fit(x,y,w); |
---|
135 | if ( !suite.equal(linear_w.beta(), polynomial_w.fit_parameters()(1),10000) ){ |
---|
136 | suite.err() << "error: beta and fit_parameters(1) not equal" << std::endl; |
---|
137 | suite.err() << " beta = " << linear_w.beta() << std::endl; |
---|
138 | suite.err() << " fit_parameters(1) = " |
---|
139 | << polynomial_w.fit_parameters()(1) << std::endl; |
---|
140 | suite.add(false); |
---|
141 | } |
---|
142 | if ( !suite.equal(polynomial_w.fit_parameters()(0), |
---|
143 | linear_w.alpha()-linear_w.beta()*1990, 10000) ){ |
---|
144 | suite.err() << "error: fit_parameters(0) = " |
---|
145 | << polynomial.fit_parameters()(0)<< std::endl; |
---|
146 | suite.err() << "error: alpha-beta*m_x = " |
---|
147 | << linear.alpha()-linear.beta()*1990 << std::endl; |
---|
148 | suite.add(false); |
---|
149 | } |
---|
150 | if ( !suite.equal(polynomial_w.s2(),linear_w.s2(), 10) ){ |
---|
151 | suite.err() << "error: chisq not same in linear and polynomial(1)" |
---|
152 | << std::endl; |
---|
153 | suite.add(false); |
---|
154 | } |
---|
155 | if ( !suite.equal(polynomial_w.predict(1.0), linear_w.predict(1.0), 10000) ){ |
---|
156 | suite.err() << "error: predict not same in linear and polynomial(1)" |
---|
157 | << std::endl; |
---|
158 | suite.add(false); |
---|
159 | } |
---|
160 | if ( !suite.equal(polynomial_w.standard_error2(1985), |
---|
161 | linear_w.standard_error2(1985), 100000) ){ |
---|
162 | suite.err() << "error: standard_error not same in linear and polynomial(1)" |
---|
163 | << "\n polynomial: " << polynomial_w.standard_error2(1985) |
---|
164 | << "\n linear: " << linear_w.standard_error2(1985) |
---|
165 | << std::endl; |
---|
166 | suite.add(false); |
---|
167 | } |
---|
168 | |
---|
169 | // testing regression::NaiveWeighted |
---|
170 | suite.err() << " testing regression::NaiveWeighted" << std::endl; |
---|
171 | regression::NaiveWeighted naive_w; |
---|
172 | regression::Naive naive; |
---|
173 | equal(naive, naive_w, suite); |
---|
174 | naive_w.fit(x,y,w); |
---|
175 | |
---|
176 | y_predicted=naive_w.predict(0.0); |
---|
177 | y_predicted_err=naive_w.prediction_error2(0.0); |
---|
178 | if (!suite.equal(y_predicted,0.1*12+0.2*11+0.3*14+0.4*13)) { |
---|
179 | suite.err() << "regression_NaiveWeighted: cannot reproduce fit.\n"; |
---|
180 | suite.err() << "returned value: " << y_predicted << std::endl; |
---|
181 | suite.err() << "expected: " << 0.1*12+0.2*11+0.3*14+0.4*13 << std::endl; |
---|
182 | suite.add(false); |
---|
183 | } |
---|
184 | |
---|
185 | // testing regression::Local |
---|
186 | suite.err() << " testing regression::Local" << std::endl; |
---|
187 | regression::KernelBox kb; |
---|
188 | regression::LinearWeighted rl; |
---|
189 | if (!Local_test(rl,kb, suite)) { |
---|
190 | suite.err() << "regression_Local: Linear cannot reproduce fit." << std::endl; |
---|
191 | suite.add(false); |
---|
192 | } |
---|
193 | regression::NaiveWeighted rn; |
---|
194 | if (!Local_test(rn,kb, suite)) { |
---|
195 | suite.err() << "regression_Local: Naive cannot reproduce fit." << std::endl; |
---|
196 | suite.add(false); |
---|
197 | } |
---|
198 | |
---|
199 | // testing regression::Polynomial |
---|
200 | suite.err() << " testing regression::Polynomial" << std::endl; |
---|
201 | { |
---|
202 | std::ifstream s(test::filename("data/regression_gauss.data").c_str()); |
---|
203 | utility::Matrix data(s); |
---|
204 | utility::Vector x(data.rows()); |
---|
205 | utility::Vector ln_y(data.rows()); |
---|
206 | for (size_t i=0; i<data.rows(); ++i) { |
---|
207 | x(i)=data(i,0); |
---|
208 | ln_y(i)=log(data(i,1)); |
---|
209 | } |
---|
210 | |
---|
211 | regression::Polynomial polynomialfit(2); |
---|
212 | polynomialfit.fit(x,ln_y); |
---|
213 | utility::Vector fit=polynomialfit.fit_parameters(); |
---|
214 | suite.add(suite.equal_fix(fit(0), 1.012229646706, 1e-11)); |
---|
215 | suite.add(suite.equal_fix(fit(1), 0.012561322528, 1e-11)); |
---|
216 | suite.add(suite.equal_fix(fit(2), -1.159674470130, 1e-11)); |
---|
217 | } |
---|
218 | |
---|
219 | suite.err() << " testing regression::PolynomialWeighted" << std::endl; |
---|
220 | regression::PolynomialWeighted pol_weighted(2); |
---|
221 | regression::Polynomial polynomial2(2); |
---|
222 | equal(polynomial2, pol_weighted, suite); |
---|
223 | |
---|
224 | multidim(suite); |
---|
225 | |
---|
226 | return suite.return_value(); |
---|
227 | } |
---|
228 | |
---|
229 | |
---|
230 | void equal(regression::OneDimensional& r, |
---|
231 | regression::OneDimensionalWeighted& wr, |
---|
232 | test::Suite& suite) |
---|
233 | { |
---|
234 | utility::Vector x(5); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; x(4)=2010; |
---|
235 | utility::Vector y(5); y(0)=12; y(1)=11; y(2)=14; y(3)=13; y(4)=15; |
---|
236 | |
---|
237 | unity_weights(r, wr, x, y, suite); |
---|
238 | rescale_weights(wr, x, y, suite); |
---|
239 | zero_weights(wr, x, y, suite); |
---|
240 | } |
---|
241 | |
---|
242 | |
---|
243 | void unity_weights(regression::OneDimensional& r, |
---|
244 | regression::OneDimensionalWeighted& rw, |
---|
245 | const utility::Vector& x, const utility::Vector& y, |
---|
246 | test::Suite& suite) |
---|
247 | { |
---|
248 | suite.err() << " testing unity weights equal to non-weighted version.\n"; |
---|
249 | utility::Vector w(x.size(), 1.0); |
---|
250 | r.fit(x,y); |
---|
251 | rw.fit(x,y,w); |
---|
252 | if (!suite.equal(r.predict(2000), rw.predict(2000)) ) { |
---|
253 | suite.add(false); |
---|
254 | suite.err() << "Error: predict not equal\n" |
---|
255 | << " weighted: " << rw.predict(2000) << "\n" |
---|
256 | << " non-weighted: " << r.predict(2000) |
---|
257 | << std::endl; |
---|
258 | } |
---|
259 | if (!suite.equal(r.s2(), rw.s2(1.0)) ){ |
---|
260 | suite.add(false); |
---|
261 | suite.err() << "Error: s2 not equal non-weighted version." << std::endl; |
---|
262 | suite.err() << "weighted s2 = " << rw.s2(1.0) << std::endl; |
---|
263 | suite.err() << "non-weighted s2 = " << r.s2() << std::endl; |
---|
264 | } |
---|
265 | if (!suite.equal_sqrt(r.standard_error2(2000), rw.standard_error2(2000), 20)){ |
---|
266 | suite.add(false); |
---|
267 | suite.err() << "Error: standard_error not equal non-weighted version." |
---|
268 | << std::endl; |
---|
269 | } |
---|
270 | if (!suite.equal(r.r2(), rw.r2()) ){ |
---|
271 | suite.add(false); |
---|
272 | suite.err() << "Error: r2 not equal non-weighted version." << std::endl; |
---|
273 | suite.err() << "weighted r2 = " << rw.r2() << std::endl; |
---|
274 | suite.err() << "non-weighted r2 = " << r.r2() << std::endl; |
---|
275 | } |
---|
276 | if (!suite.equal_sqrt(r.prediction_error2(2000), rw.prediction_error2(2000,1), |
---|
277 | 100) ){ |
---|
278 | suite.add(false); |
---|
279 | suite.err() << "Error: prediction_error2 not equal non-weighted version.\n" |
---|
280 | << " weighted: " << rw.prediction_error2(2000,1) << "\n" |
---|
281 | << " non-weighted: " << r.prediction_error2(2000) |
---|
282 | << std::endl; |
---|
283 | } |
---|
284 | } |
---|
285 | |
---|
286 | |
---|
287 | void rescale_weights(regression::OneDimensionalWeighted& wr, |
---|
288 | const utility::Vector& x, const utility::Vector& y, |
---|
289 | test::Suite& suite) |
---|
290 | { |
---|
291 | suite.err() << " testing rescaling weights.\n"; |
---|
292 | utility::Vector w(5); w(0)=1.0; w(1)=1.0; w(2)=0.5; w(3)=0.2; w(4)=0.2; |
---|
293 | wr.fit(x,y,w); |
---|
294 | double predict = wr.predict(2000); |
---|
295 | double prediction_error2 = wr.prediction_error2(2000); |
---|
296 | double r2 = wr.r2(); |
---|
297 | double s2 = wr.s2(); |
---|
298 | double standard_error2 = wr.standard_error2(2000); |
---|
299 | |
---|
300 | w*=2; |
---|
301 | wr.fit(x,y,w); |
---|
302 | if (!suite.equal(wr.predict(2000), predict, 10000) ){ |
---|
303 | suite.add(false); |
---|
304 | suite.err() << "Error: predict not equal after rescaling.\n"; |
---|
305 | suite.err() << " predict = " << predict |
---|
306 | << " and after doubling weights.\n"; |
---|
307 | suite.err() << " predict = " << wr.predict(2000) << "\n"; |
---|
308 | } |
---|
309 | if (!suite.equal(wr.s2(2), s2, 14000) ){ |
---|
310 | suite.add(false); |
---|
311 | suite.err() << "Error: s2 not equal after rescaling.\n"; |
---|
312 | suite.err() << " s2 = " << s2 << " and after doubling weights.\n"; |
---|
313 | suite.err() << " s2 = " << wr.s2(2) << "\n"; |
---|
314 | suite.err() << "difference " << s2-wr.s2(2.0) << std::endl; |
---|
315 | } |
---|
316 | if (!suite.equal_sqrt(wr.standard_error2(2000), standard_error2, 100) ){ |
---|
317 | suite.add(false); |
---|
318 | suite.err() << "Error: standard_error2 not equal after rescaling.\n"; |
---|
319 | suite.err() << " standard_error2 = " << standard_error2 |
---|
320 | << " and after doubling weights.\n"; |
---|
321 | suite.err() << " standard_error2 = " |
---|
322 | << wr.standard_error2(2000) << "\n"; |
---|
323 | suite.err() << " difference: " << wr.standard_error2(2000)-standard_error2 |
---|
324 | << std::endl; |
---|
325 | } |
---|
326 | if (!suite.equal(wr.r2(), r2, 10000) ){ |
---|
327 | suite.add(false); |
---|
328 | suite.err() << "Error: r2 not equal after rescaling.\n"; |
---|
329 | } |
---|
330 | if (!suite.equal_sqrt(wr.prediction_error2(2000,2), prediction_error2, 10) ){ |
---|
331 | suite.add(false); |
---|
332 | suite.err() << "Error: prediction_error2 not equal after rescaling.\n"; |
---|
333 | suite.err() << " prediction_error2 = " << prediction_error2 |
---|
334 | << " and after doubling weights.\n"; |
---|
335 | suite.err() << " prediction_error2 = " |
---|
336 | << wr.prediction_error2(2000,2) << "\n"; |
---|
337 | } |
---|
338 | } |
---|
339 | |
---|
340 | |
---|
341 | void zero_weights(regression::OneDimensionalWeighted& wr, |
---|
342 | const utility::Vector& x, const utility::Vector& y, |
---|
343 | test::Suite& suite) |
---|
344 | { |
---|
345 | suite.err() << " testing zero weights equal to missing value.\n"; |
---|
346 | utility::Vector w(5); w(0)=1.0; w(1)=1.0; w(2)=0.5; w(3)=0.2; w(4)=0; |
---|
347 | wr.fit(x,y,w); |
---|
348 | double predict = wr.predict(2000); |
---|
349 | double prediction_error2 = wr.prediction_error2(2000); |
---|
350 | double r2 = wr.r2(); |
---|
351 | double s2 = wr.s2(); |
---|
352 | double standard_error2 = wr.standard_error2(2000); |
---|
353 | |
---|
354 | utility::Vector x2(4); |
---|
355 | utility::Vector y2(4); |
---|
356 | utility::Vector w2(4); |
---|
357 | for (size_t i=0; i<4; ++i){ |
---|
358 | x2(i) = x(i); |
---|
359 | y2(i) = y(i); |
---|
360 | w2(i) = w(i); |
---|
361 | } |
---|
362 | |
---|
363 | wr.fit(x2,y2,w2); |
---|
364 | if (!suite.equal(wr.predict(2000), predict, 10000) ) { |
---|
365 | suite.add(false); |
---|
366 | suite.err() << "Error: predict not equal.\n"; |
---|
367 | suite.err() << " weighted predict: " << wr.predict(2000) << "\n"; |
---|
368 | suite.err() << " unweighted predict: " << predict << "\n"; |
---|
369 | suite.err() << " difference: " << wr.predict(2000)-predict << "\n"; |
---|
370 | |
---|
371 | } |
---|
372 | if (!suite.equal(wr.prediction_error2(2000), prediction_error2) ) { |
---|
373 | suite.add(false); |
---|
374 | suite.err() << "Error: prediction_error2 not equal.\n"; |
---|
375 | } |
---|
376 | if (!suite.equal(wr.r2(), r2) ) { |
---|
377 | suite.add(false); |
---|
378 | suite.err() << "Error: r2 not equal.\n"; |
---|
379 | suite.err() << " r2: " << r2 << "\n"; |
---|
380 | suite.err() << " r2: " << wr.r2() << "\n"; |
---|
381 | } |
---|
382 | if (!suite.equal(wr.s2(), s2) ) { |
---|
383 | suite.add(false); |
---|
384 | suite.err() << "Error: s2 not equal.\n"; |
---|
385 | } |
---|
386 | if (!suite.equal(wr.standard_error2(2000), standard_error2) ) { |
---|
387 | suite.add(false); |
---|
388 | suite.err() << "Error: standard_error2 not equal.\n"; |
---|
389 | } |
---|
390 | } |
---|
391 | |
---|
392 | |
---|
393 | void multidim(test::Suite& suite) |
---|
394 | { |
---|
395 | suite.err() << " testing regression::MultiDimensionalWeighted" << std::endl; |
---|
396 | utility::Vector x(5); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; x(4)=2010; |
---|
397 | utility::Vector y(5); y(0)=12; y(1)=11; y(2)=14; y(3)=13; y(4)=15; |
---|
398 | utility::Vector w(5,1.0); |
---|
399 | |
---|
400 | utility::Matrix data(5,3); |
---|
401 | for (size_t i=0; i<data.rows(); ++i){ |
---|
402 | data(i,0)=1; |
---|
403 | data(i,1)=x(i); |
---|
404 | data(i,2)=x(i)*x(i); |
---|
405 | } |
---|
406 | regression::MultiDimensional md; |
---|
407 | md.fit(data,y); |
---|
408 | regression::MultiDimensionalWeighted mdw; |
---|
409 | mdw.fit(data,y,w); |
---|
410 | utility::Vector z(3,1); |
---|
411 | z(1)=2000; |
---|
412 | z(2)=2000*2000; |
---|
413 | if (!suite.equal(md.predict(z), mdw.predict(z))){ |
---|
414 | suite.add(false); |
---|
415 | suite.err() << "Error: predict not equal\n" |
---|
416 | << " weighted: " << mdw.predict(z) << "\n" |
---|
417 | << " non-weighted: " << md.predict(z) |
---|
418 | << std::endl; |
---|
419 | } |
---|
420 | |
---|
421 | if (!suite.equal_sqrt(md.standard_error2(z), mdw.standard_error2(z),20) ){ |
---|
422 | suite.add(false); |
---|
423 | suite.err() << "Error: standard_error2 not equal\n" |
---|
424 | << " weighted: " << mdw.standard_error2(z) << "\n" |
---|
425 | << " non-weighted: " << md.standard_error2(z) |
---|
426 | << std::endl; |
---|
427 | } |
---|
428 | if (!suite.equal_sqrt(md.prediction_error2(z), mdw.prediction_error2(z,1.0), |
---|
429 | 20) ){ |
---|
430 | suite.add(false); |
---|
431 | suite.err() << "Error: prediction_error2 not equal\n" |
---|
432 | << " weighted: " << mdw.prediction_error2(z,1.0) << "\n" |
---|
433 | << " non-weighted: " << md.prediction_error2(z) |
---|
434 | << std::endl; |
---|
435 | } |
---|
436 | |
---|
437 | w(0)=1.0; w(1)=1.0; w(2)=0.5; w(3)=0.2; w(4)=0.2; |
---|
438 | mdw.fit(data,y,w); |
---|
439 | double predict = mdw.predict(z); |
---|
440 | double prediction_error2 = mdw.prediction_error2(z, 1.0); |
---|
441 | double s2 = mdw.s2(1.0); |
---|
442 | double standard_error2 = mdw.standard_error2(z); |
---|
443 | |
---|
444 | w*=2; |
---|
445 | mdw.fit(data,y,w); |
---|
446 | if (!suite.equal(mdw.predict(z), predict, 10000) ){ |
---|
447 | suite.add(false); |
---|
448 | suite.err() << "Error: predict not equal after rescaling.\n"; |
---|
449 | suite.err() << " predict = " << predict |
---|
450 | << " and after doubling weights.\n"; |
---|
451 | suite.err() << " predict = " << mdw.predict(z) << "\n"; |
---|
452 | } |
---|
453 | if (!suite.equal_sqrt(mdw.prediction_error2(z,2), prediction_error2,10) ){ |
---|
454 | suite.add(false); |
---|
455 | suite.err() << "Error: prediction_error2 not equal after rescaling.\n"; |
---|
456 | suite.err() << " predict_error2 = " << prediction_error2 |
---|
457 | << " and after doubling weights.\n"; |
---|
458 | suite.err() << " predict_error2 = " |
---|
459 | << mdw.prediction_error2(z,2) << "\n"; |
---|
460 | } |
---|
461 | if (!suite.equal(mdw.s2(2), s2, 14000) ){ |
---|
462 | suite.add(false); |
---|
463 | suite.err() << "Error: s2 not equal after rescaling.\n"; |
---|
464 | suite.err() << " s2 = " << s2 << " and after doubling weights.\n"; |
---|
465 | suite.err() << " s2 = " << mdw.s2(2) << "\n"; |
---|
466 | } |
---|
467 | if (!suite.equal_sqrt(mdw.standard_error2(z), standard_error2, 100) ){ |
---|
468 | suite.add(false); |
---|
469 | suite.err() << "Error: standard_error2 not equal after rescaling.\n"; |
---|
470 | suite.err() << " standard_error2 = " << standard_error2 |
---|
471 | << " and after doubling weights.\n"; |
---|
472 | suite.err() << " standard_error2 = " << mdw.standard_error2(z) << "\n"; |
---|
473 | } |
---|
474 | } |
---|
475 | |
---|
476 | |
---|
477 | bool Local_test(regression::OneDimensionalWeighted& r, |
---|
478 | regression::Kernel& k, test::Suite& suite) |
---|
479 | { |
---|
480 | regression::Local rl(r,k); |
---|
481 | for (size_t i=0; i<1000; i++){ |
---|
482 | rl.add(i, 10); |
---|
483 | } |
---|
484 | |
---|
485 | rl.fit(10, 100); |
---|
486 | if (rl.x().size()!=1000/10) |
---|
487 | return false; |
---|
488 | for (size_t i=0; i+1<rl.x().size(); ++i) |
---|
489 | if (!suite.equal(rl.x()(i+1)-rl.x()(i),10.0)) |
---|
490 | return false; |
---|
491 | |
---|
492 | utility::Vector y(rl.y_predicted()); |
---|
493 | for (size_t i=0; i<y.size(); i++) |
---|
494 | if (!suite.equal(y(i),10.0)){ |
---|
495 | return false; |
---|
496 | } |
---|
497 | |
---|
498 | return true; |
---|
499 | } |
---|