1 | // $Id: svm_test.cc 470 2005-12-19 19:46:50Z peter $ |
---|
2 | |
---|
3 | #include <c++_tools/gslapi/matrix.h> |
---|
4 | #include <c++_tools/gslapi/vector.h> |
---|
5 | #include <c++_tools/classifier/SVM.h> |
---|
6 | #include <c++_tools/classifier/Kernel.h> |
---|
7 | #include <c++_tools/classifier/KernelLookup.h> |
---|
8 | #include <c++_tools/classifier/Kernel_SEV.h> |
---|
9 | #include <c++_tools/classifier/Kernel_MEV.h> |
---|
10 | #include <c++_tools/classifier/PolynomialKernelFunction.h> |
---|
11 | |
---|
12 | #include <cassert> |
---|
13 | #include <fstream> |
---|
14 | #include <iostream> |
---|
15 | #include <cstdlib> |
---|
16 | #include <limits> |
---|
17 | |
---|
18 | using namespace theplu; |
---|
19 | |
---|
20 | int main(const int argc,const char* argv[]) |
---|
21 | { |
---|
22 | |
---|
23 | std::ostream* error; |
---|
24 | if (argc>1 && argv[1]==std::string("-v")) |
---|
25 | error = &std::cerr; |
---|
26 | else { |
---|
27 | error = new std::ofstream("/dev/null"); |
---|
28 | if (argc>1) |
---|
29 | std::cout << "svm_test -v : for printing extra information\n"; |
---|
30 | } |
---|
31 | *error << "testing svm" << std::endl; |
---|
32 | bool ok = true; |
---|
33 | |
---|
34 | gslapi::matrix data2(2,3); |
---|
35 | data2(0,0)=0; |
---|
36 | data2(1,0)=0; |
---|
37 | data2(0,1)=0; |
---|
38 | data2(1,1)=1; |
---|
39 | data2(0,2)=1; |
---|
40 | data2(1,2)=0; |
---|
41 | classifier::Target target2(3); |
---|
42 | target2(0)=-1; |
---|
43 | target2(1)=1; |
---|
44 | target2(2)=1; |
---|
45 | classifier::KernelFunction* kf2 = new classifier::PolynomialKernelFunction(); |
---|
46 | classifier::Kernel_MEV kernel2(data2,*kf2); |
---|
47 | assert(kernel2.size()==3); |
---|
48 | assert(target2.size()==3); |
---|
49 | classifier::KernelLookup kv2(kernel2); |
---|
50 | *error << "testing with linear kernel" << std::endl; |
---|
51 | assert(kv2.rows()==target2.size()); |
---|
52 | classifier::SVM classifier2(kv2, target2); |
---|
53 | *error << "training..."; |
---|
54 | classifier2.train(); |
---|
55 | *error << " done." << std::endl; |
---|
56 | |
---|
57 | double tmp=0; |
---|
58 | for (size_t i=0; i<target2.size(); i++) |
---|
59 | tmp += classifier2.alpha()(i)*target2(i); |
---|
60 | |
---|
61 | if (tmp){ |
---|
62 | *error << "condition not fullfilled" << std::endl; |
---|
63 | return -1; |
---|
64 | } |
---|
65 | |
---|
66 | if (classifier2.alpha()(1)!=2 || classifier2.alpha()(2)!=2){ |
---|
67 | *error << "wrong alpha" << std::endl; |
---|
68 | *error << "alpha: " << classifier2.alpha() << std::endl; |
---|
69 | *error << "expected: 4 2 2" << std::endl; |
---|
70 | |
---|
71 | return -1; |
---|
72 | } |
---|
73 | |
---|
74 | |
---|
75 | |
---|
76 | std::ifstream is("data/nm_data_centralized.txt"); |
---|
77 | gslapi::matrix transposed_data(is); |
---|
78 | is.close(); |
---|
79 | // Because how the kernel is treated is changed, data must be transposed. |
---|
80 | gslapi::matrix data=transposed_data; |
---|
81 | |
---|
82 | classifier::KernelFunction* kf = new classifier::PolynomialKernelFunction(); |
---|
83 | classifier::Kernel_SEV kernel(data,*kf); |
---|
84 | |
---|
85 | |
---|
86 | is.open("data/nm_target_bin.txt"); |
---|
87 | classifier::Target target(is); |
---|
88 | is.close(); |
---|
89 | |
---|
90 | is.open("data/nm_alpha_linear_matlab.txt"); |
---|
91 | theplu::gslapi::vector alpha_matlab(is); |
---|
92 | is.close(); |
---|
93 | |
---|
94 | classifier::KernelLookup kv(kernel); |
---|
95 | theplu::classifier::SVM svm(kv, target); |
---|
96 | if (!svm.train()){ |
---|
97 | ok=false; |
---|
98 | *error << "Training failured" << std::endl; |
---|
99 | } |
---|
100 | |
---|
101 | theplu::gslapi::vector alpha = svm.alpha(); |
---|
102 | |
---|
103 | // Comparing alpha to alpha_matlab |
---|
104 | theplu::gslapi::vector diff_alpha(alpha); |
---|
105 | diff_alpha-=alpha_matlab; |
---|
106 | if (diff_alpha*diff_alpha> 1e-10 ){ |
---|
107 | *error << "Difference to matlab alphas too large\n"; |
---|
108 | ok=false; |
---|
109 | } |
---|
110 | |
---|
111 | // Comparing output to target |
---|
112 | theplu::gslapi::vector output(svm.output()); |
---|
113 | double slack = 0; |
---|
114 | for (unsigned int i=0; i<target.size(); i++){ |
---|
115 | if (output(i)*target(i) < 1){ |
---|
116 | slack += 1 - output(i)*target(i); |
---|
117 | } |
---|
118 | } |
---|
119 | double slack_bound=2e-7; |
---|
120 | if (slack > slack_bound){ |
---|
121 | *error << "Slack too large. Is the bias correct?\n"; |
---|
122 | *error << "slack: " << slack << std::endl; |
---|
123 | *error << "expected less than " << slack_bound << std::endl; |
---|
124 | ok = false; |
---|
125 | } |
---|
126 | |
---|
127 | delete kf; |
---|
128 | delete kf2; |
---|
129 | |
---|
130 | if (error!=&std::cerr) |
---|
131 | delete error; |
---|
132 | |
---|
133 | if(ok) |
---|
134 | return 0; |
---|
135 | return -1; |
---|
136 | |
---|
137 | } |
---|