1 | #ifndef _theplu_classifier_ensemblebuilder_ |
---|
2 | #define _theplu_classifier_ensemblebuilder_ |
---|
3 | |
---|
4 | // $Id$ |
---|
5 | |
---|
6 | /* |
---|
7 | Copyright (C) The authors contributing to this file. |
---|
8 | |
---|
9 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
10 | |
---|
11 | The yat library is free software; you can redistribute it and/or |
---|
12 | modify it under the terms of the GNU General Public License as |
---|
13 | published by the Free Software Foundation; either version 2 of the |
---|
14 | License, or (at your option) any later version. |
---|
15 | |
---|
16 | The yat library is distributed in the hope that it will be useful, |
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
19 | General Public License for more details. |
---|
20 | |
---|
21 | You should have received a copy of the GNU General Public License |
---|
22 | along with this program; if not, write to the Free Software |
---|
23 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
24 | 02111-1307, USA. |
---|
25 | */ |
---|
26 | |
---|
27 | #include "yat/statistics/Averager.h"! |
---|
28 | |
---|
29 | #include <vector> |
---|
30 | |
---|
31 | namespace theplu { |
---|
32 | namespace classifier { |
---|
33 | |
---|
34 | class SubsetGenerator; |
---|
35 | class DataLookup2D; |
---|
36 | class SupervisedClassifier; |
---|
37 | |
---|
38 | /// |
---|
39 | /// Class for ensembles of supervised classifiers |
---|
40 | /// |
---|
41 | |
---|
42 | class EnsembleBuilder |
---|
43 | { |
---|
44 | |
---|
45 | public: |
---|
46 | /// |
---|
47 | /// Constructor. |
---|
48 | /// |
---|
49 | EnsembleBuilder(const SupervisedClassifier&, SubsetGenerator&); |
---|
50 | |
---|
51 | /// |
---|
52 | /// Destructor. |
---|
53 | /// |
---|
54 | virtual ~EnsembleBuilder(void); |
---|
55 | |
---|
56 | |
---|
57 | /// |
---|
58 | /// Generate ensemble. Function trains each member of the Ensemble. |
---|
59 | /// |
---|
60 | void build(void); |
---|
61 | |
---|
62 | /// |
---|
63 | /// @Return classifier |
---|
64 | /// |
---|
65 | inline const SupervisedClassifier& classifier(size_t i) const |
---|
66 | { |
---|
67 | return *(classifier_[i]); |
---|
68 | } |
---|
69 | |
---|
70 | /// |
---|
71 | /// @Return Number of classifiers in ensemble |
---|
72 | /// |
---|
73 | inline u_long size(void) const |
---|
74 | { |
---|
75 | return classifier_.size(); |
---|
76 | } |
---|
77 | |
---|
78 | /// |
---|
79 | /// @brief Generate validation data for ensemble |
---|
80 | /// |
---|
81 | /// validate()[i][j] return averager for class @a i for sample @a j |
---|
82 | /// |
---|
83 | const std::vector<std::vector<statistics::Averager> >& validate(void); |
---|
84 | |
---|
85 | /** |
---|
86 | Predict a dataset using the ensemble. |
---|
87 | |
---|
88 | If @a data is a KernelLookup each column should correspond to a |
---|
89 | test sample and each row should correspond to a training |
---|
90 | sample. More exactly row \f$ i \f$ in @a data should correspond |
---|
91 | to the same sample as row/column \f$ i \f$ in the training |
---|
92 | kernel corresponds to. |
---|
93 | */ |
---|
94 | void predict(const DataLookup2D& data, |
---|
95 | std::vector<std::vector<statistics::Averager> > &); |
---|
96 | |
---|
97 | |
---|
98 | private: |
---|
99 | |
---|
100 | const SupervisedClassifier& mother_; |
---|
101 | SubsetGenerator& subset_; |
---|
102 | std::vector<SupervisedClassifier*> classifier_; |
---|
103 | std::vector<std::vector<statistics::Averager> > validation_result_; |
---|
104 | |
---|
105 | }; |
---|
106 | |
---|
107 | }} // of namespace classifier and namespace theplu |
---|
108 | |
---|
109 | #endif |
---|