1 | #ifndef _theplu_statistics_regression_linear_weighted_ |
---|
2 | #define _theplu_statistics_regression_linear_weighted_ |
---|
3 | |
---|
4 | // $Id: LinearWeighted.h 616 2006-08-31 08:52:02Z jari $ |
---|
5 | |
---|
6 | #include <c++_tools/statistics/OneDimensionalWeighted.h> |
---|
7 | |
---|
8 | #include <cmath> |
---|
9 | |
---|
10 | namespace theplu { |
---|
11 | namespace utility { |
---|
12 | class vector; |
---|
13 | } |
---|
14 | namespace statistics { |
---|
15 | namespace regression { |
---|
16 | |
---|
17 | /// |
---|
18 | /// @brief linear regression. |
---|
19 | /// |
---|
20 | /// @todo document |
---|
21 | /// |
---|
22 | class LinearWeighted : public OneDimensionalWeighted |
---|
23 | { |
---|
24 | |
---|
25 | public: |
---|
26 | /// |
---|
27 | /// Default Constructor. |
---|
28 | /// |
---|
29 | inline LinearWeighted(void) |
---|
30 | : OneDimensionalWeighted(), alpha_(0), alpha_var_(0), beta_(0), |
---|
31 | beta_var_(0), |
---|
32 | m_x_(0){} |
---|
33 | |
---|
34 | /// |
---|
35 | /// Destructor |
---|
36 | /// |
---|
37 | inline virtual ~LinearWeighted(void) {}; |
---|
38 | |
---|
39 | /// |
---|
40 | /// @return the parameter \f$ \alpha \f$ |
---|
41 | /// |
---|
42 | inline double alpha(void) const { return alpha_; } |
---|
43 | |
---|
44 | /// |
---|
45 | /// @return standard deviation of parameter \f$ \alpha \f$ |
---|
46 | /// |
---|
47 | inline double alpha_err(void) const { return sqrt(alpha_var_); } |
---|
48 | |
---|
49 | /// |
---|
50 | /// @return the parameter \f$ \beta \f$ |
---|
51 | /// |
---|
52 | inline double beta(void) const { return beta_; } |
---|
53 | |
---|
54 | /// |
---|
55 | /// @return standard deviation of parameter \f$ \beta \f$ |
---|
56 | /// |
---|
57 | inline double beta_err(void) const { return sqrt(beta_var_); } |
---|
58 | |
---|
59 | /// |
---|
60 | /// This function computes the best-fit linear regression |
---|
61 | /// coefficients \f$ (\alpha, \beta)\f$ of the model \f$ y = |
---|
62 | /// \alpha + \beta (x-m_x) \f$ from vectors \a x and \a y, by |
---|
63 | /// minimizing \f$ \sum{w_i(y_i - \alpha - \beta (x-m_x))^2} \f$, |
---|
64 | /// where \f$ m_x \f$ is the weighted average. By construction \f$ |
---|
65 | /// \alpha \f$ and \f$ \beta \f$ are independent. |
---|
66 | /// |
---|
67 | void fit(const utility::vector& x, const utility::vector& y, |
---|
68 | const utility::vector& w); |
---|
69 | |
---|
70 | /// |
---|
71 | /// Function predicting value using the linear model: \f$ y = |
---|
72 | /// \alpha + \beta (x - m) |
---|
73 | double predict(const double x) const { return alpha_ + beta_ * (x-m_x_); } |
---|
74 | |
---|
75 | /// |
---|
76 | /// estimated deviation from predicted value for a new data point |
---|
77 | /// in @a x with weight @a w |
---|
78 | /// |
---|
79 | inline double prediction_error(const double x, const double w=1) const |
---|
80 | { return sqrt(alpha_var_ + beta_var_*(x-m_x_)*(x-m_x_)+s2_/w); } |
---|
81 | |
---|
82 | /// |
---|
83 | /// estimated error @a y_err \f$ y_err = \sqrt{ Var(\alpha) + |
---|
84 | /// Var(\beta)*(x-m)^2 }. |
---|
85 | /// |
---|
86 | inline double standard_error(const double x) const |
---|
87 | { return sqrt(alpha_var_ + beta_var_*(x-m_x_)*(x-m_x_) ); } |
---|
88 | |
---|
89 | /// |
---|
90 | /// Function returning the coefficient of determination, |
---|
91 | /// i.e. fraction of variance explained by the linear model. |
---|
92 | /// |
---|
93 | inline double r2(void) const { return r2_; } |
---|
94 | |
---|
95 | private: |
---|
96 | /// |
---|
97 | /// Copy Constructor. (not implemented) |
---|
98 | /// |
---|
99 | LinearWeighted(const LinearWeighted&); |
---|
100 | |
---|
101 | double alpha_; |
---|
102 | double alpha_var_; |
---|
103 | double beta_; |
---|
104 | double beta_var_; |
---|
105 | double m_x_; // average of x values |
---|
106 | double r2_; // coefficient of determination |
---|
107 | }; |
---|
108 | |
---|
109 | }}} // of namespaces regression, statisitcs and thep |
---|
110 | |
---|
111 | #endif |
---|