1 | #ifndef _theplu_statistics_regression_onedimensioanl_ |
---|
2 | #define _theplu_statistics_regression_onedimensioanl_ |
---|
3 | |
---|
4 | // $Id: OneDimensional.h 675 2006-10-10 12:08:45Z jari $ |
---|
5 | |
---|
6 | /* |
---|
7 | Copyright (C) The authors contributing to this file. |
---|
8 | |
---|
9 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
10 | |
---|
11 | The yat library is free software; you can redistribute it and/or |
---|
12 | modify it under the terms of the GNU General Public License as |
---|
13 | published by the Free Software Foundation; either version 2 of the |
---|
14 | License, or (at your option) any later version. |
---|
15 | |
---|
16 | The yat library is distributed in the hope that it will be useful, |
---|
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
19 | General Public License for more details. |
---|
20 | |
---|
21 | You should have received a copy of the GNU General Public License |
---|
22 | along with this program; if not, write to the Free Software |
---|
23 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
24 | 02111-1307, USA. |
---|
25 | */ |
---|
26 | |
---|
27 | #include "yat/statistics/AveragerPair.h" |
---|
28 | |
---|
29 | #include <ostream> |
---|
30 | |
---|
31 | namespace theplu { |
---|
32 | namespace utility { |
---|
33 | class vector; |
---|
34 | } |
---|
35 | |
---|
36 | namespace statistics { |
---|
37 | namespace regression { |
---|
38 | |
---|
39 | /// |
---|
40 | /// Abstract Base Class for One Dimensional fitting. |
---|
41 | /// |
---|
42 | /// @todo document |
---|
43 | /// |
---|
44 | class OneDimensional |
---|
45 | { |
---|
46 | |
---|
47 | public: |
---|
48 | /// |
---|
49 | /// Default Constructor. |
---|
50 | /// |
---|
51 | inline OneDimensional(void) {} |
---|
52 | |
---|
53 | /// |
---|
54 | /// Destructor |
---|
55 | /// |
---|
56 | virtual ~OneDimensional(void) {}; |
---|
57 | |
---|
58 | /// |
---|
59 | /// This function computes the best-fit given a model (see |
---|
60 | /// specific class for details) by minimizing \f$ |
---|
61 | /// \sum{(\hat{y_i}-y_i)^2} \f$, where \f$ \hat{y} \f$ is the fitted value. |
---|
62 | /// |
---|
63 | virtual void fit(const utility::vector& x, const utility::vector& y)=0; |
---|
64 | |
---|
65 | /// |
---|
66 | /// function predicting in one point |
---|
67 | /// |
---|
68 | virtual double predict(const double x) const=0; |
---|
69 | |
---|
70 | /// |
---|
71 | /// @return expected prediction error for a new data point in @a x |
---|
72 | /// |
---|
73 | virtual double prediction_error(const double x) const=0; |
---|
74 | |
---|
75 | /// |
---|
76 | /// @brief print output to @a os |
---|
77 | /// |
---|
78 | std::ostream& print(std::ostream& os,const double min, |
---|
79 | double max, const u_int n) const; |
---|
80 | |
---|
81 | /// |
---|
82 | /// @return error of model value in @a x |
---|
83 | /// |
---|
84 | virtual double standard_error(const double x) const=0; |
---|
85 | |
---|
86 | protected: |
---|
87 | /// |
---|
88 | /// Averager for pair of x and y |
---|
89 | /// |
---|
90 | AveragerPair ap_; |
---|
91 | |
---|
92 | /// |
---|
93 | /// mean squared deviation (model from data points) |
---|
94 | /// |
---|
95 | double msd_; |
---|
96 | }; |
---|
97 | |
---|
98 | }}} // of namespaces regression, statisitcs and thep |
---|
99 | |
---|
100 | #endif |
---|