1 | // $Id: SAM.cc 675 2006-10-10 12:08:45Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/statistics/SAM.h" |
---|
25 | #include "yat/statistics/Averager.h" |
---|
26 | #include "yat/statistics/AveragerWeighted.h" |
---|
27 | #include "yat/classifier/DataLookupWeighted1D.h" |
---|
28 | #include "yat/classifier/Target.h" |
---|
29 | #include "yat/utility/vector.h" |
---|
30 | |
---|
31 | #include <cmath> |
---|
32 | |
---|
33 | namespace theplu { |
---|
34 | namespace statistics { |
---|
35 | |
---|
36 | SAM::SAM(const double s0, bool b) |
---|
37 | : Score(b), s0_(s0) |
---|
38 | { |
---|
39 | } |
---|
40 | |
---|
41 | double SAM::score(const classifier::Target& target, |
---|
42 | const utility::vector& value) |
---|
43 | { |
---|
44 | weighted_=false; |
---|
45 | statistics::Averager positive; |
---|
46 | statistics::Averager negative; |
---|
47 | for(size_t i=0; i<target.size(); i++){ |
---|
48 | if (target.binary(i)) |
---|
49 | positive.add(value(i)); |
---|
50 | else |
---|
51 | negative.add(value(i)); |
---|
52 | } |
---|
53 | if(positive.n()+negative.n()<=2) |
---|
54 | return 0; |
---|
55 | double diff = positive.mean() - negative.mean(); |
---|
56 | double s2 = ( (1.0/positive.n()+1.0/negative.n()) * |
---|
57 | (positive.sum_xx_centered()+negative.sum_xx_centered()) / |
---|
58 | (positive.n()+negative.n()-2) ); |
---|
59 | if (diff<0 && absolute_) |
---|
60 | return -diff/(sqrt(s2)+s0_); |
---|
61 | return diff/(sqrt(s2)+s0_); |
---|
62 | } |
---|
63 | |
---|
64 | double SAM::score(const classifier::Target& target, |
---|
65 | const classifier::DataLookupWeighted1D& value) |
---|
66 | { |
---|
67 | weighted_=true; |
---|
68 | statistics::AveragerWeighted positive; |
---|
69 | statistics::AveragerWeighted negative; |
---|
70 | for(size_t i=0; i<target.size(); i++){ |
---|
71 | if (target.binary(i)) |
---|
72 | positive.add(value.data(i),value.weight(i)); |
---|
73 | else |
---|
74 | negative.add(value.data(i),value.weight(i)); |
---|
75 | } |
---|
76 | if(positive.n()+negative.n()<=2) |
---|
77 | return 0; |
---|
78 | double diff = positive.mean() - negative.mean(); |
---|
79 | double s2 = ( (1.0/positive.n()+1.0/negative.n()) * |
---|
80 | (positive.sum_xx_centered()+negative.sum_xx_centered()) / |
---|
81 | (positive.n()+negative.n()-2) ); |
---|
82 | if (diff<0 && absolute_) |
---|
83 | return -diff/(sqrt(s2)+s0_); |
---|
84 | return diff/(sqrt(s2)+s0_); |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | double SAM::score(const classifier::Target& target, |
---|
90 | const utility::vector& value, |
---|
91 | const utility::vector& weight) |
---|
92 | { |
---|
93 | weighted_=true; |
---|
94 | statistics::AveragerWeighted positive; |
---|
95 | statistics::AveragerWeighted negative; |
---|
96 | for(size_t i=0; i<target.size(); i++){ |
---|
97 | if (target.binary(i)) |
---|
98 | positive.add(value(i),weight(i)); |
---|
99 | else |
---|
100 | negative.add(value(i),weight(i)); |
---|
101 | } |
---|
102 | if(positive.n()+negative.n()<=2) |
---|
103 | return 0; |
---|
104 | double diff = positive.mean() - negative.mean(); |
---|
105 | double s2 = ( (1.0/positive.n()+1.0/negative.n()) * |
---|
106 | (positive.sum_xx_centered()+negative.sum_xx_centered()) / |
---|
107 | (positive.n()+negative.n()-2) ); |
---|
108 | if (diff<0 && absolute_) |
---|
109 | return -diff/(sqrt(s2)+s0_); |
---|
110 | return diff/(sqrt(s2)+s0_); |
---|
111 | } |
---|
112 | |
---|
113 | |
---|
114 | |
---|
115 | }} // of namespace statistics and namespace theplu |
---|