1 | // $Id: CrossSplitter.cc 558 2006-03-10 15:58:16Z peter $ |
---|
2 | |
---|
3 | |
---|
4 | #include <c++_tools/classifier/CrossSplitter.h> |
---|
5 | #include <c++_tools/classifier/DataLookup2D.h> |
---|
6 | #include <c++_tools/classifier/Target.h> |
---|
7 | #include <c++_tools/random/random.h> |
---|
8 | |
---|
9 | #include <algorithm> |
---|
10 | #include <cassert> |
---|
11 | #include <utility> |
---|
12 | #include <vector> |
---|
13 | |
---|
14 | namespace theplu { |
---|
15 | namespace classifier { |
---|
16 | |
---|
17 | CrossSplitter::CrossSplitter(const Target& target, const DataLookup2D& data, |
---|
18 | const size_t N, const size_t k) |
---|
19 | : k_(k), state_(0), target_(target), weighted_(false) |
---|
20 | { |
---|
21 | assert(target.size()>1); |
---|
22 | assert(target.size()==data.columns()); |
---|
23 | |
---|
24 | build(target, N, k); |
---|
25 | |
---|
26 | for (size_t i=0; i<N; i++){ |
---|
27 | |
---|
28 | // Dynamically allocated. Must be deleted in destructor. |
---|
29 | training_data_.push_back(data.training_data(training_index_[i])); |
---|
30 | training_weight_.push_back |
---|
31 | (new MatrixLookup(training_data_.back()->rows(), |
---|
32 | training_data_.back()->columns(),1)); |
---|
33 | validation_data_.push_back(data.validation_data(training_index_[i], |
---|
34 | validation_index_[i])); |
---|
35 | validation_weight_.push_back |
---|
36 | (new MatrixLookup(validation_data_.back()->rows(), |
---|
37 | validation_data_.back()->columns(),1)); |
---|
38 | |
---|
39 | |
---|
40 | training_target_.push_back(Target(target,training_index_[i])); |
---|
41 | validation_target_.push_back(Target(target,validation_index_[i])); |
---|
42 | } |
---|
43 | assert(training_data_.size()==N); |
---|
44 | assert(training_weight_.size()==N); |
---|
45 | assert(training_target_.size()==N); |
---|
46 | assert(validation_data_.size()==N); |
---|
47 | assert(validation_weight_.size()==N); |
---|
48 | assert(validation_target_.size()==N); |
---|
49 | } |
---|
50 | |
---|
51 | CrossSplitter::CrossSplitter(const Target& target, const DataLookup2D& data, |
---|
52 | const MatrixLookup& weight, |
---|
53 | const size_t N, const size_t k) |
---|
54 | : k_(k), state_(0), target_(target), weighted_(true) |
---|
55 | { |
---|
56 | assert(target.size()>1); |
---|
57 | assert(target.size()==data.columns()); |
---|
58 | |
---|
59 | build(target, N, k); |
---|
60 | |
---|
61 | for (size_t i=0; i<N; i++){ |
---|
62 | |
---|
63 | // Dynamically allocated. Must be deleted in destructor. |
---|
64 | training_data_.push_back(data.training_data(training_index_[i])); |
---|
65 | validation_data_.push_back(data.validation_data(training_index_[i], |
---|
66 | validation_index_[i])); |
---|
67 | training_weight_.push_back(weight.training_data(training_index_[i])); |
---|
68 | validation_weight_.push_back(weight.validation_data(training_index_[i], |
---|
69 | validation_index_[i])); |
---|
70 | |
---|
71 | |
---|
72 | training_target_.push_back(Target(target,training_index_[i])); |
---|
73 | validation_target_.push_back(Target(target,validation_index_[i])); |
---|
74 | } |
---|
75 | assert(training_data_.size()==N); |
---|
76 | assert(training_weight_.size()==N); |
---|
77 | assert(training_target_.size()==N); |
---|
78 | assert(validation_data_.size()==N); |
---|
79 | assert(validation_weight_.size()==N); |
---|
80 | assert(validation_target_.size()==N); |
---|
81 | } |
---|
82 | |
---|
83 | CrossSplitter::~CrossSplitter() |
---|
84 | { |
---|
85 | assert(training_data_.size()==validation_data_.size()); |
---|
86 | for (size_t i=0; i<training_data_.size(); i++) |
---|
87 | delete training_data_[i]; |
---|
88 | for (size_t i=0; i<validation_data_.size(); i++) |
---|
89 | delete validation_data_[i]; |
---|
90 | for (size_t i=0; i<training_weight_.size(); i++) |
---|
91 | delete training_weight_[i]; |
---|
92 | for (size_t i=0; i<validation_weight_.size(); i++) |
---|
93 | delete validation_weight_[i]; |
---|
94 | } |
---|
95 | |
---|
96 | void CrossSplitter::build(const Target& target, size_t N, size_t k) |
---|
97 | { |
---|
98 | std::vector<std::pair<size_t,size_t> > v; |
---|
99 | for (size_t i=0; i<target.size(); i++) |
---|
100 | v.push_back(std::make_pair(target(i),i)); |
---|
101 | // sorting with respect to class |
---|
102 | std::sort(v.begin(),v.end()); |
---|
103 | |
---|
104 | // my_begin[i] is index of first sample of class i |
---|
105 | std::vector<size_t> my_begin; |
---|
106 | my_begin.reserve(target.nof_classes()); |
---|
107 | my_begin.push_back(0); |
---|
108 | for (size_t i=1; i<target.size(); i++) |
---|
109 | while (v[i].first > my_begin.size()-1) |
---|
110 | my_begin.push_back(i); |
---|
111 | my_begin.push_back(target.size()); |
---|
112 | |
---|
113 | random::DiscreteUniform rnd; |
---|
114 | |
---|
115 | for (size_t i=0; i<N; ) { |
---|
116 | // shuffle indices within class each class |
---|
117 | for (size_t j=0; j<target.nof_classes(); j++) |
---|
118 | random_shuffle(v.begin()+my_begin[j],v.begin()+my_begin[j+1],rnd); |
---|
119 | |
---|
120 | for (size_t part=0; part<k && i<N; i++, part++) { |
---|
121 | std::vector<size_t> training_index; |
---|
122 | std::vector<size_t> validation_index; |
---|
123 | for (size_t j=0; j<v.size(); j++) { |
---|
124 | if (j%k==part) |
---|
125 | validation_index.push_back(v[j].second); |
---|
126 | else |
---|
127 | training_index.push_back(v[j].second); |
---|
128 | } |
---|
129 | |
---|
130 | training_index_.push_back(training_index); |
---|
131 | validation_index_.push_back(validation_index); |
---|
132 | } |
---|
133 | } |
---|
134 | assert(training_index_.size()==N); |
---|
135 | assert(validation_index_.size()==N); |
---|
136 | } |
---|
137 | |
---|
138 | }} // of namespace classifier and namespace theplu |
---|