1 | // $Id: Kernel_MEV.h 545 2006-03-06 13:35:45Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_classifier_kernel_mev_ |
---|
4 | #define _theplu_classifier_kernel_mev_ |
---|
5 | |
---|
6 | #include <c++_tools/classifier/DataLookup1D.h> |
---|
7 | #include <c++_tools/classifier/Kernel.h> |
---|
8 | #include <c++_tools/classifier/KernelFunction.h> |
---|
9 | #include <c++_tools/gslapi/vector.h> |
---|
10 | #include <c++_tools/gslapi/matrix.h> |
---|
11 | |
---|
12 | namespace theplu { |
---|
13 | namespace classifier { |
---|
14 | |
---|
15 | /// |
---|
16 | /// @brief Memory Efficient Kernel |
---|
17 | /// Class taking care of the \f$NxN\f$ kernel matrix, where |
---|
18 | /// \f$N\f$ is number of samples. Type of Kernel is defined by a |
---|
19 | /// KernelFunction. This Memory Efficient Version (MEV) does not |
---|
20 | /// store the kernel matrix in memory, but calculates each element |
---|
21 | /// when it is needed. When memory allows do always use Kernel_SEV |
---|
22 | /// instead. |
---|
23 | /// |
---|
24 | /// @see also Kernel_SEV |
---|
25 | /// |
---|
26 | class Kernel_MEV : public Kernel |
---|
27 | { |
---|
28 | |
---|
29 | public: |
---|
30 | |
---|
31 | /// |
---|
32 | /// Constructor taking the data matrix and KernelFunction as |
---|
33 | /// input.Each column in the data matrix corresponds to one |
---|
34 | /// sample. @note Can not handle NaNs. |
---|
35 | /// |
---|
36 | inline Kernel_MEV(const MatrixLookup& data, const KernelFunction& kf) |
---|
37 | : Kernel(data,kf) {} |
---|
38 | |
---|
39 | /// |
---|
40 | /// @todo doc |
---|
41 | /// |
---|
42 | Kernel_MEV(const Kernel_MEV& kernel, const std::vector<size_t>& index); |
---|
43 | |
---|
44 | |
---|
45 | /// |
---|
46 | /// Destructor |
---|
47 | /// |
---|
48 | inline virtual ~Kernel_MEV(void) {}; |
---|
49 | |
---|
50 | /// |
---|
51 | /// @return Element at position (\a row, \a column) of the Kernel |
---|
52 | /// matrix |
---|
53 | /// |
---|
54 | double operator()(const size_t row, const size_t column) const; |
---|
55 | |
---|
56 | /// |
---|
57 | /// @return kernel element between data @a ve and training sample @a i |
---|
58 | /// |
---|
59 | inline double element(const DataLookup1D& vec, const size_t i) const |
---|
60 | { return kf_->operator()(vec, DataLookup1D(*data_,i)); } |
---|
61 | |
---|
62 | inline double element(const DataLookup1D& vec, const DataLookup1D& w, |
---|
63 | const size_t i) const |
---|
64 | {return (*kf_)(vec, DataLookup1D(*data_,i), w, DataLookup1D(w.size(),1.0));} |
---|
65 | |
---|
66 | const Kernel_MEV* selected(const std::vector<size_t>& index) const; |
---|
67 | |
---|
68 | inline bool weighted(void) const { return false; } |
---|
69 | |
---|
70 | private: |
---|
71 | /// |
---|
72 | /// Copy constructor (not implemented) |
---|
73 | /// |
---|
74 | Kernel_MEV(const Kernel_MEV&); |
---|
75 | |
---|
76 | }; // class Kernel_MEV |
---|
77 | |
---|
78 | }} // of namespace classifier and namespace theplu |
---|
79 | |
---|
80 | #endif |
---|