1 | // $Id$ |
---|
2 | |
---|
3 | #include <c++_tools/classifier/NCC.h> |
---|
4 | |
---|
5 | #include <c++_tools/classifier/DataLookup1D.h> |
---|
6 | #include <c++_tools/classifier/DataLookup2D.h> |
---|
7 | #include <c++_tools/classifier/Target.h> |
---|
8 | #include <c++_tools/gslapi/vector.h> |
---|
9 | #include <c++_tools/statistics/Distance.h> |
---|
10 | #include <c++_tools/utility/stl_utility.h> |
---|
11 | |
---|
12 | #include<iostream> |
---|
13 | #include<iterator> |
---|
14 | #include <map> |
---|
15 | #include <cmath> |
---|
16 | |
---|
17 | namespace theplu { |
---|
18 | namespace classifier { |
---|
19 | |
---|
20 | NCC::NCC(const DataLookup2D& data, const Target& target, |
---|
21 | const statistics::Distance& distance) |
---|
22 | : SupervisedClassifier(target), distance_(distance), matrix_(data) |
---|
23 | { |
---|
24 | } |
---|
25 | |
---|
26 | SupervisedClassifier* |
---|
27 | NCC::make_classifier(const DataLookup2D& data, |
---|
28 | const Target& target) const |
---|
29 | { |
---|
30 | NCC* sc= new NCC(data,target,this->distance_); |
---|
31 | return sc; |
---|
32 | } |
---|
33 | |
---|
34 | |
---|
35 | bool NCC::train() |
---|
36 | { |
---|
37 | // Calculate the centroids for each class |
---|
38 | centroids_=gslapi::matrix(matrix_.rows(),target_.nof_classes()); |
---|
39 | gslapi::matrix nof_in_class(matrix_.rows(),target_.nof_classes()); |
---|
40 | for(size_t i=0; i<matrix_.rows(); i++) { |
---|
41 | for(size_t j=0; j<matrix_.columns(); j++) { |
---|
42 | if(!std::isnan(matrix_(i,j))) { |
---|
43 | centroids_(i,target_(j)) += matrix_(i,j); |
---|
44 | nof_in_class(i,target_(j))++; |
---|
45 | } |
---|
46 | } |
---|
47 | } |
---|
48 | centroids_.div_elements(nof_in_class); |
---|
49 | trained_=true; |
---|
50 | return trained_; |
---|
51 | } |
---|
52 | |
---|
53 | void NCC::predict(const DataLookup1D& input, |
---|
54 | gslapi::vector& prediction) const |
---|
55 | { |
---|
56 | prediction=gslapi::vector(centroids_.columns()); |
---|
57 | gslapi::vector w(input.size(),0); |
---|
58 | for(size_t i=0; i<input.size(); i++) // take care of missing values |
---|
59 | if(!std::isnan(input(i))) |
---|
60 | w(i)=1.0; |
---|
61 | for(size_t j=0; j<centroids_.columns(); j++) |
---|
62 | prediction(j)=distance_(gslapi::vector(input), |
---|
63 | gslapi::vector(centroids_,j,false),w, w); |
---|
64 | } |
---|
65 | |
---|
66 | |
---|
67 | void NCC::predict(const DataLookup2D& input, |
---|
68 | gslapi::matrix& prediction) const |
---|
69 | { |
---|
70 | prediction=gslapi::matrix(centroids_.columns(), input.columns()); |
---|
71 | for(size_t j=0; j<input.columns();j++) { |
---|
72 | DataLookup1D in(input,j,true); |
---|
73 | gslapi::vector out; |
---|
74 | predict(in,out); |
---|
75 | prediction.set_column(j,out); |
---|
76 | } |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | // additional operators |
---|
81 | |
---|
82 | std::ostream& operator<< (std::ostream& s, const NCC& ncc) { |
---|
83 | // std::copy(ncc.classes().begin(), ncc.classes().end(), |
---|
84 | // std::ostream_iterator<std::map<double, u_int>::value_type> |
---|
85 | // (s, "\n")); |
---|
86 | s << "\n" << ncc.centroids() << "\n"; |
---|
87 | return s; |
---|
88 | } |
---|
89 | |
---|
90 | }} // of namespace classifier and namespace theplu |
---|