1 | // $Id: AveragerPair.h 295 2005-04-29 09:15:58Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_statistics_averagerpair_ |
---|
4 | #define _theplu_statistics__averagerpair_ |
---|
5 | |
---|
6 | #include <c++_tools/statistics/Averager.h> |
---|
7 | |
---|
8 | #include <cmath> |
---|
9 | #include <utility> |
---|
10 | |
---|
11 | |
---|
12 | namespace theplu{ |
---|
13 | |
---|
14 | class gslapi::vector; |
---|
15 | |
---|
16 | namespace statistics{ |
---|
17 | /// |
---|
18 | /// Class for taking care of mean and covariance of two variables. |
---|
19 | /// |
---|
20 | class AveragerPair |
---|
21 | { |
---|
22 | public: |
---|
23 | |
---|
24 | /// |
---|
25 | /// Default constructor |
---|
26 | /// |
---|
27 | AveragerPair(void); |
---|
28 | |
---|
29 | /// |
---|
30 | /// Constructor taking sum of \a x , \a xx , \a y , \a yy , xy and |
---|
31 | /// number of pair of values \a n |
---|
32 | /// |
---|
33 | AveragerPair(const double x, const double xx, const double y, |
---|
34 | const double yy, const double xy, const long); |
---|
35 | |
---|
36 | /// |
---|
37 | /// Copy constructor |
---|
38 | /// |
---|
39 | AveragerPair(const AveragerPair&); |
---|
40 | |
---|
41 | /// |
---|
42 | /// Adding \a n pairs of data points with value \a x and \a y. |
---|
43 | /// |
---|
44 | inline void add(const double x, const double y, const long n=1) |
---|
45 | { x_.add(x,n); y_.add(y,n), xy_ += n*x*y; } |
---|
46 | |
---|
47 | /// |
---|
48 | /// \f$\frac{\sum_i (x_i-m_x)(y_i-m_y)}{\sqrt{\sum_i |
---|
49 | /// (x_i-m_x)^2\sum_i (y_i-m_y)^2}}\f$ |
---|
50 | /// |
---|
51 | /// @return Concordence correlation coefficient. |
---|
52 | /// |
---|
53 | inline double ccc(void) const |
---|
54 | { return ( (x_.variance() || y_.variance() || x_.mean()-y_.mean() ) ? |
---|
55 | ((2*covariance()) / |
---|
56 | ((x_.variance()+y_.variance()) + |
---|
57 | (x_.mean()-y_.mean())*(x_.mean()-y_.mean()))) : 0); } |
---|
58 | |
---|
59 | /// |
---|
60 | /// \f$\frac{\sum_i (x_i-m_x)(y_i-m_y)}{\sqrt{\sum_i |
---|
61 | /// (x_i-m_x)^2\sum_i (y_i-m_y)^2}}\f$ |
---|
62 | /// |
---|
63 | /// @return Pearson correlation coefficient. |
---|
64 | /// |
---|
65 | inline double correlation(void) const |
---|
66 | { return ((x_.std()>0 && y_.std()>0) ? |
---|
67 | (covariance() / (x_.std()*y_.std()) ) : 0); } |
---|
68 | |
---|
69 | /// |
---|
70 | /// The covariance is calculated using the \f$ (n-1) \f$ |
---|
71 | /// correction, which means it is the best unbiased estimator of |
---|
72 | /// the covariance \f$ \frac{1}{N-1}\sum_i (x_i-m_x)(y_i-m_y)\f$, |
---|
73 | /// where \f$m\f$ is the mean. |
---|
74 | /// |
---|
75 | /// @return The covariance. |
---|
76 | /// |
---|
77 | inline double covariance(void) const |
---|
78 | { return (n()>1) ? (xy_ - x_.sum_x()*y_.mean()) / (n()-1): 0; } |
---|
79 | |
---|
80 | /// |
---|
81 | /// @return The mean of xy. |
---|
82 | /// |
---|
83 | inline double mean_xy(void) const { return xy_/n(); } |
---|
84 | |
---|
85 | /// |
---|
86 | /// @return Average squared deviation between x and y \f$ |
---|
87 | /// \frac{1}{N} \sum (x-y)^2 \f$ |
---|
88 | /// |
---|
89 | inline double msd() const {return x_.mean_sqr()+y_.mean_sqr()-2*mean_xy();} |
---|
90 | |
---|
91 | /// |
---|
92 | /// @return The number of pair of data points. |
---|
93 | /// |
---|
94 | inline long n(void) const { return x_.n(); } |
---|
95 | |
---|
96 | /// |
---|
97 | /// Resets everything to zero |
---|
98 | /// |
---|
99 | inline void reset(void) { x_.reset(); y_.reset(); xy_=0.0; } |
---|
100 | |
---|
101 | /// |
---|
102 | /// @return The sum of xy. |
---|
103 | /// |
---|
104 | inline double sum_xy(void) const { return xy_; } |
---|
105 | |
---|
106 | /// |
---|
107 | /// @return \f$ \sum_i (x_i-m_x)(y_i-m_y)\f$ |
---|
108 | /// |
---|
109 | inline double sum_xy_centered(void) const {return xy_-x_.sum_x()*y_.mean();} |
---|
110 | |
---|
111 | /// |
---|
112 | /// @return A const refencer to the averager object for x. |
---|
113 | /// |
---|
114 | inline const Averager& x_averager(void) const { return x_; } |
---|
115 | |
---|
116 | /// |
---|
117 | /// @return A const reference to the averager object for y |
---|
118 | /// |
---|
119 | inline const Averager& y_averager(void) const { return y_; } |
---|
120 | |
---|
121 | /// |
---|
122 | /// The assigment operator |
---|
123 | /// |
---|
124 | inline const AveragerPair& operator=(const AveragerPair& a) |
---|
125 | { x_=a.x_; y_=a.y_; xy_=a.xy_; return *this; } |
---|
126 | |
---|
127 | /// |
---|
128 | /// Operator to add another Averager |
---|
129 | /// |
---|
130 | const AveragerPair& operator+=(const AveragerPair&); |
---|
131 | |
---|
132 | private: |
---|
133 | Averager x_; |
---|
134 | Averager y_; |
---|
135 | double xy_; |
---|
136 | |
---|
137 | }; |
---|
138 | |
---|
139 | }} // of namespace statistics and namespace theplu |
---|
140 | |
---|
141 | #endif |
---|