1 | // $Id: LinearWeighted.h 430 2005-12-08 22:53:08Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_statistics_regression_linear_weighted_ |
---|
4 | #define _theplu_statistics_regression_linear_weighted_ |
---|
5 | |
---|
6 | #include <c++_tools/statistics/OneDimensionalWeighted.h> |
---|
7 | #include <c++_tools/gslapi/vector.h> |
---|
8 | |
---|
9 | #include <cmath> |
---|
10 | |
---|
11 | namespace theplu { |
---|
12 | namespace statistics { |
---|
13 | namespace regression { |
---|
14 | |
---|
15 | /// |
---|
16 | /// @brief linear regression. |
---|
17 | /// |
---|
18 | /// @todo document |
---|
19 | /// |
---|
20 | class LinearWeighted : public OneDimensionalWeighted |
---|
21 | { |
---|
22 | |
---|
23 | public: |
---|
24 | /// |
---|
25 | /// Default Constructor. |
---|
26 | /// |
---|
27 | inline LinearWeighted(void) |
---|
28 | : OneDimensionalWeighted(), alpha_(0), alpha_var_(0), beta_(0), |
---|
29 | beta_var_(0), |
---|
30 | m_x_(0), s2_(0) {} |
---|
31 | |
---|
32 | /// |
---|
33 | /// Destructor |
---|
34 | /// |
---|
35 | inline virtual ~LinearWeighted(void) {}; |
---|
36 | |
---|
37 | /// |
---|
38 | /// @return the parameter \f$ \alpha \f$ |
---|
39 | /// |
---|
40 | inline double alpha(void) const { return alpha_; } |
---|
41 | |
---|
42 | /// |
---|
43 | /// @return standard deviation of parameter \f$ \alpha \f$ |
---|
44 | /// |
---|
45 | inline double alpha_err(void) const { return sqrt(alpha_var_); } |
---|
46 | |
---|
47 | /// |
---|
48 | /// @return the parameter \f$ \beta \f$ |
---|
49 | /// |
---|
50 | inline double beta(void) const { return beta_; } |
---|
51 | |
---|
52 | /// |
---|
53 | /// @return standard deviation of parameter \f$ \beta \f$ |
---|
54 | /// |
---|
55 | inline double beta_err(void) const { return sqrt(beta_var_); } |
---|
56 | |
---|
57 | /// |
---|
58 | /// This function computes the best-fit linear regression |
---|
59 | /// coefficients \f$ (\alpha, \beta)\f$ of the model \f$ y = |
---|
60 | /// \alpha + \beta (x-m_x) \f$ from vectors \a x and \a y, by |
---|
61 | /// minimizing \f$ \sum{w_i(y_i - \alpha - \beta (x-m_x))^2} \f$, |
---|
62 | /// where \f$ m_x \f$ is the weighted average. By construction \f$ |
---|
63 | /// \alpha \f$ and \f$ \beta \f$ are independent. |
---|
64 | /// |
---|
65 | void fit(const gslapi::vector& x, const gslapi::vector& y, |
---|
66 | const gslapi::vector& w); |
---|
67 | |
---|
68 | /// |
---|
69 | /// Function predicting value using the linear model. \a y_err is |
---|
70 | /// the expected deviation from the line for a new data point. If |
---|
71 | /// weights are used a weight can be specified for the new point. |
---|
72 | /// |
---|
73 | inline void predict(const double x, double& y, double& y_err, |
---|
74 | const double w=1.0) |
---|
75 | { |
---|
76 | y = alpha_ + beta_ * (x-m_x_); |
---|
77 | y_err_ = y_err = sqrt( alpha_var_+beta_var_*(x-m_x_)*(x-m_x_)+s2_/w ); |
---|
78 | x_=x; |
---|
79 | y_=y; |
---|
80 | } |
---|
81 | |
---|
82 | /// |
---|
83 | /// @return prediction value and parameters |
---|
84 | /// |
---|
85 | std::ostream& print(std::ostream&) const; |
---|
86 | |
---|
87 | /// |
---|
88 | /// @return header for print() |
---|
89 | /// |
---|
90 | std::ostream& print_header(std::ostream&) const; |
---|
91 | |
---|
92 | /// |
---|
93 | /// Function returning the coefficient of determination, |
---|
94 | /// i.e. fraction of variance explained by the linear model. |
---|
95 | /// |
---|
96 | inline double r2(void) const { return r2_; } |
---|
97 | |
---|
98 | private: |
---|
99 | /// |
---|
100 | /// Copy Constructor. (not implemented) |
---|
101 | /// |
---|
102 | LinearWeighted(const LinearWeighted&); |
---|
103 | |
---|
104 | double alpha_; |
---|
105 | double alpha_var_; |
---|
106 | double beta_; |
---|
107 | double beta_var_; |
---|
108 | double m_x_; // average of x values |
---|
109 | double s2_; // var(y|x) |
---|
110 | double r2_; // coefficient of determination |
---|
111 | }; |
---|
112 | |
---|
113 | }}} // of namespaces regression, statisitcs and thep |
---|
114 | |
---|
115 | #endif |
---|