1 | // $Id: Naive.h 389 2005-08-15 11:37:07Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_statistics_regression_naive_ |
---|
4 | #define _theplu_statistics_regression_naive_ |
---|
5 | |
---|
6 | #include <c++_tools/statistics/OneDimensional.h> |
---|
7 | |
---|
8 | #include <c++_tools/gslapi/vector.h> |
---|
9 | #include <c++_tools/statistics/Averager.h> |
---|
10 | #include <c++_tools/statistics/AveragerWeighted.h> |
---|
11 | |
---|
12 | #include <iostream> |
---|
13 | #include <utility> |
---|
14 | |
---|
15 | |
---|
16 | namespace theplu { |
---|
17 | namespace statistics { |
---|
18 | namespace regression { |
---|
19 | |
---|
20 | /// |
---|
21 | /// @bief naive fitting. |
---|
22 | /// |
---|
23 | /// @todo document |
---|
24 | /// |
---|
25 | class Naive : public OneDimensional |
---|
26 | { |
---|
27 | |
---|
28 | public: |
---|
29 | /// |
---|
30 | /// Default Constructor. |
---|
31 | /// |
---|
32 | inline Naive(void) : OneDimensional(), m_(0.0), m_err_(0.0) {} |
---|
33 | |
---|
34 | /// |
---|
35 | /// Copy Constructor. (not implemented) |
---|
36 | /// |
---|
37 | Naive(const Naive&); |
---|
38 | |
---|
39 | /// |
---|
40 | /// Destructor |
---|
41 | /// |
---|
42 | virtual ~Naive(void) {}; |
---|
43 | |
---|
44 | /// |
---|
45 | /// This function computes the best-fit for the naive model \f$ y |
---|
46 | /// = m \f$ from vectors \a x and \a y, by minimizing \f$ |
---|
47 | /// \sum{(y_i-m)^2} \f$. This function is the same as using the |
---|
48 | /// weighted version with unity weights. |
---|
49 | /// |
---|
50 | void fit(const gslapi::vector& x, const gslapi::vector& y); |
---|
51 | |
---|
52 | /// |
---|
53 | /// This function computes the best-fit for the naive model \f$ y |
---|
54 | /// = m \f$ from vectors \a x and \a y, by minimizing \f$ \sum |
---|
55 | /// w_i(y_i-m)^2 \f$. The weight \f$ w_i \f$ is proportional to |
---|
56 | /// the inverse of the variance for \f$ y_i \f$ |
---|
57 | /// |
---|
58 | void fit(const gslapi::vector& x, |
---|
59 | const gslapi::vector& y, |
---|
60 | const gslapi::vector& w); |
---|
61 | |
---|
62 | /// |
---|
63 | /// Function predicting value using the naive model. \a y_err is |
---|
64 | /// the expected deviation from the line for a new data point. The |
---|
65 | /// weight for the new point can be specified. A smaller weight |
---|
66 | /// means larger error. The error has two components: the variance |
---|
67 | /// of point and error in estimation of m_. |
---|
68 | /// |
---|
69 | void predict(const double x, double& y, double& y_err, |
---|
70 | const double w=1) ; |
---|
71 | |
---|
72 | /// |
---|
73 | /// @return prediction value and parameters |
---|
74 | /// |
---|
75 | std::ostream& print(std::ostream&) const; |
---|
76 | |
---|
77 | /// |
---|
78 | /// @return header for print() |
---|
79 | /// |
---|
80 | std::ostream& print_header(std::ostream&) const; |
---|
81 | |
---|
82 | |
---|
83 | private: |
---|
84 | double s2_; // noise level - the typical variance for a point with |
---|
85 | // weight w is s2/w |
---|
86 | double m_; |
---|
87 | double m_err_; // error of estimation of mean m_ |
---|
88 | |
---|
89 | }; |
---|
90 | |
---|
91 | |
---|
92 | }}} // of namespaces regression, statisitcs and thep |
---|
93 | |
---|
94 | #endif |
---|