1 | // $Id: OneDimensional.h 389 2005-08-15 11:37:07Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_statistics_regression_onedimensioanl_ |
---|
4 | #define _theplu_statistics_regression_onedimensioanl_ |
---|
5 | |
---|
6 | #include <ostream> |
---|
7 | |
---|
8 | namespace theplu { |
---|
9 | namespace gslapi { |
---|
10 | class vector; |
---|
11 | } |
---|
12 | |
---|
13 | namespace statistics { |
---|
14 | namespace regression { |
---|
15 | |
---|
16 | /// |
---|
17 | /// Abstract Base Class for One Dimensional fitting. |
---|
18 | /// |
---|
19 | /// @todo document |
---|
20 | /// |
---|
21 | class OneDimensional |
---|
22 | { |
---|
23 | |
---|
24 | public: |
---|
25 | /// |
---|
26 | /// Default Constructor. |
---|
27 | /// |
---|
28 | inline OneDimensional(void) : x_(0.0), y_(0.0), y_err_(0.0) {} |
---|
29 | |
---|
30 | /// |
---|
31 | /// Destructor |
---|
32 | /// |
---|
33 | virtual ~OneDimensional(void) {}; |
---|
34 | |
---|
35 | /// |
---|
36 | /// This function computes the best-fit given a model (see |
---|
37 | /// specific class for details) by minimizing \f$ |
---|
38 | /// \sum{(\hat{y_i}-y_i)^2} \f$, where \f$ \hat{y} \f$ is the fitted value. |
---|
39 | /// |
---|
40 | virtual void fit(const gslapi::vector& x, const gslapi::vector& y)=0; |
---|
41 | |
---|
42 | /// |
---|
43 | /// This function computes the best-fit given a model (see |
---|
44 | /// specific class for details) by minimizing \f$ |
---|
45 | /// \sum{w_i(\hat{y_i}-y_i)^2} \f$, where \f$ \hat{y} \f$ is the |
---|
46 | /// fitted value. The weight \f$ w_i \f$ is should be proportional |
---|
47 | /// to the inverse of the variance for \f$ y_i \f$ |
---|
48 | /// |
---|
49 | virtual void fit(const gslapi::vector& x, const gslapi::vector& y, |
---|
50 | const gslapi::vector& w)=0; |
---|
51 | /// |
---|
52 | /// function predicting in one point |
---|
53 | /// |
---|
54 | virtual void predict(const double x, double& y, double& y_err, |
---|
55 | const double w=1) =0; |
---|
56 | /// |
---|
57 | /// @return prediction value and parameters |
---|
58 | /// |
---|
59 | virtual std::ostream& print(std::ostream&) const=0; |
---|
60 | |
---|
61 | /// |
---|
62 | /// @return header for print() |
---|
63 | /// |
---|
64 | virtual std::ostream& print_header(std::ostream& s) const=0; |
---|
65 | |
---|
66 | protected: |
---|
67 | /// |
---|
68 | /// x for predicted point |
---|
69 | /// |
---|
70 | double x_; |
---|
71 | /// |
---|
72 | /// y for predicted point |
---|
73 | /// |
---|
74 | double y_; |
---|
75 | /// |
---|
76 | /// estimated error of predicted point (in y). |
---|
77 | /// |
---|
78 | double y_err_; |
---|
79 | }; |
---|
80 | |
---|
81 | }}} // of namespaces regression, statisitcs and thep |
---|
82 | |
---|
83 | #endif |
---|