source: trunk/lib/statistics/tScore.cc @ 526

Last change on this file since 526 was 526, checked in by Markus Ringnér, 17 years ago

Fixed bug in tScore and in MatrixLookup?. Added support for scoring inputs in SupervisedClassifier? and for using this in training and prediction in NCC.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 1.8 KB
Line 
1// $Id: tScore.cc 526 2006-03-01 08:49:48Z markus $
2
3// System includes
4#include <cassert>
5#include <cmath>
6
7// Thep C++ Tools
8#include <c++_tools/statistics/tScore.h>
9#include <c++_tools/statistics/Averager.h>
10#include <c++_tools/statistics/AveragerWeighted.h>
11#include <c++_tools/classifier/Target.h>
12
13namespace theplu {
14namespace statistics { 
15
16  tScore::tScore(bool b) 
17    : Score(b),  t_(0)
18  {
19  }
20
21  double tScore::score(const classifier::Target& target, 
22                       const gslapi::vector& value)
23  {
24    weighted_=false;
25    statistics::Averager positive;
26    statistics::Averager negative;
27    dof_=target.size()-2;
28    for(size_t i=0; i<target.size(); i++){
29      if (target.binary(i))
30        positive.add(value(i));
31      else
32        negative.add(value(i));
33    }
34    double diff = positive.mean() - negative.mean();
35    double s2=(positive.sum_xx_centered()+negative.sum_xx_centered())/
36      (positive.n()+negative.n()-2);
37    t_=diff/sqrt(s2*(1.0/positive.n()+1.0/negative.n()));
38    if (t_<0 && absolute_)
39      t_=-t_;
40     
41    return t_;
42  }
43
44  double tScore::score(const classifier::Target& target, 
45                       const gslapi::vector& value,
46                       const gslapi::vector& weight)
47  {
48    weighted_=true;
49
50    statistics::AveragerWeighted positive;
51    statistics::AveragerWeighted negative;
52    dof_=target.size()-2;
53    for(size_t i=0; i<target.size(); i++){
54      if (target.binary(i))
55        positive.add(value(i),weight(i));
56      else
57        negative.add(value(i),weight(i));
58    }
59    double diff = positive.mean() - negative.mean();
60    double s2=(positive.sum_xx_centered()+negative.sum_xx_centered())/
61      (positive.n()+negative.n()-2);
62    t_=diff/sqrt(s2*(1.0/positive.sum_w()+1.0/negative.sum_w()));
63    if (t_<0 && absolute_)
64      t_=-t_;
65     
66    return t_;
67  }
68
69  double tScore::p_value(void) const
70  {
71    double p = gsl_cdf_tdist_Q(t_, dof_);
72    return (dof_ > 0 && !weighted_) ? p : 1;
73  }
74
75
76
77}} // of namespace statistics and namespace theplu
Note: See TracBrowser for help on using the repository browser.