1 | // $Id: RegressionLinear.cc 221 2004-12-30 22:36:25Z peter $ |
---|
2 | |
---|
3 | // Header |
---|
4 | #include "RegressionLinear.h" |
---|
5 | |
---|
6 | // C++_tools |
---|
7 | #include "AveragerPair.h" |
---|
8 | #include "Regression.h" |
---|
9 | #include "vector.h" |
---|
10 | |
---|
11 | #include <gsl/gsl_fit.h> |
---|
12 | |
---|
13 | |
---|
14 | namespace theplu { |
---|
15 | namespace statistics { |
---|
16 | |
---|
17 | |
---|
18 | RegressionLinear::RegressionLinear(void) |
---|
19 | : Regression(), alpha_(0), alpha_var_(0), beta_(0), beta_var_(0), m_x_(0), |
---|
20 | s2_(0) |
---|
21 | { |
---|
22 | } |
---|
23 | |
---|
24 | void RegressionLinear::fit(const gslapi::vector& x, const gslapi::vector& y) |
---|
25 | { |
---|
26 | statistics::AveragerPair ap; |
---|
27 | for (size_t i=0; i<x.size(); i++) |
---|
28 | ap.add(x(i),y(i)); |
---|
29 | |
---|
30 | alpha_ = ap.y_averager().mean(); |
---|
31 | beta_ = ap.covariance() / ap.x_averager().variance(); |
---|
32 | |
---|
33 | // estimating the noise level, i.e. the conditional variance of y |
---|
34 | // given x, Var(y|x). |
---|
35 | double Q = (ap.y_averager().sum_xsqr_centered() - ap.sum_xy_centered() * |
---|
36 | ap.sum_xy_centered()/ap.x_averager().sum_xsqr_centered() ) ; |
---|
37 | s2_ = Q/(x.size()-2); |
---|
38 | r2_= 1; |
---|
39 | alpha_var_ = s2_ / x.size(); |
---|
40 | beta_var_ = s2_ / ap.x_averager().sum_xsqr_centered(); |
---|
41 | m_x_ = ap.x_averager().mean(); |
---|
42 | } |
---|
43 | |
---|
44 | void RegressionLinear::fit(const gslapi::vector& x, const gslapi::vector& y, |
---|
45 | const gslapi::vector& w) |
---|
46 | { |
---|
47 | double m_x = w*x /w.sum(); |
---|
48 | double m_y = w*y /w.sum(); |
---|
49 | |
---|
50 | double sxy = 0; |
---|
51 | for (size_t i=0; i<x.size(); i++) |
---|
52 | sxy += w(i)*(x(i)-m_x)*(y(i)-m_y); |
---|
53 | |
---|
54 | double sxx = 0; |
---|
55 | for (size_t i=0; i<x.size(); i++) |
---|
56 | sxx += w(i)*(x(i)-m_x)*(x(i)-m_x); |
---|
57 | |
---|
58 | double syy = 0; |
---|
59 | for (size_t i=0; i<y.size(); i++) |
---|
60 | syy += w(i)*(y(i)-m_y)*(y(i)-m_y); |
---|
61 | |
---|
62 | // estimating the noise level. see attached document for motivation |
---|
63 | // of the expression. |
---|
64 | s2_= (syy-sxy*sxy/sxx)/(w.sum()-2*(w*w)/w.sum()) ; |
---|
65 | |
---|
66 | alpha_ = m_y; |
---|
67 | beta_ = sxy/sxx; |
---|
68 | alpha_var_ = s2_/w.sum(); |
---|
69 | beta_var_ = s2_/sxx; |
---|
70 | m_x_=m_x; |
---|
71 | } |
---|
72 | |
---|
73 | |
---|
74 | }} // of namespace statistics and namespace theplu |
---|