source: trunk/src/RegressionLocal.h @ 221

Last change on this file since 221 was 221, checked in by Peter, 17 years ago

interface to regression modified

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 2.1 KB
Line 
1// $Id: RegressionLocal.h 221 2004-12-30 22:36:25Z peter $
2
3#ifndef _theplu_statistics_regression_local_
4#define _theplu_statistics_regression_local_
5
6// C++ tools include
7/////////////////////
8#include "Regression.h"
9#include "RegressionKernel.h"
10#include "vector.h"
11
12// Standard C++ includes
13////////////////////////
14
15
16namespace theplu {
17namespace statistics { 
18 
19 
20  ///
21  /// Class for Locally-weighted regression.   
22  ///
23 
24  class RegressionLocal
25  {
26 
27  public:
28    ///
29    /// Default Constructor.
30    ///
31    RegressionLocal(void);
32
33    ///
34    /// Constructor loading the object with data, type of regressor,
35    /// type of kernel and in how many points to predict.
36    ///
37    RegressionLocal(const gslapi::vector& x, const gslapi::vector& y,
38                    Regression& r, RegressionKernel& k, const size_t);
39
40    ///
41    /// Copy Constructor. (Not implemented)
42    ///
43    RegressionLocal(const RegressionLocal&);
44
45    ///
46    /// Destructor
47    ///
48    virtual ~RegressionLocal(void) {};
49
50    ///
51    /// Function returning the points where to predict
52    ///
53    inline gslapi::vector estimated_x(void) const { return estimated_x_; }
54
55    ///
56    /// Function returning predicted values
57    ///
58    inline gslapi::vector estimated_y(void) const { return estimated_y_; }
59
60    ///
61    /// Function returning error of predictions
62    ///
63    inline gslapi::vector estimated_y_err(void) const {return estimated_y_err_;}
64 
65    ///
66    /// Function performing the fit, using a \a fraction of the data
67    /// point and regression method defined in the constructor. The
68    /// algorithm uses equally many points around the point to
69    /// predict. If this is not possible (because the point is too far
70    /// left/right) the points to the extreme left/right is used.
71    ///
72    void fit(const double fraction);
73   
74         
75  private:
76    std::vector<std::pair<double, double> > data_;
77    gslapi::vector data_y_;
78    RegressionKernel* kernel_;
79    Regression* regression_;
80    gslapi::vector estimated_x_;
81    gslapi::vector estimated_y_;
82    gslapi::vector estimated_y_err_;
83   
84   
85  };
86
87  ///
88  /// The output operator for Local Regression Class.
89  ///
90  std::ostream& operator<< (std::ostream& s, const RegressionLocal&);
91
92}} // of namespace statistics and namespace theplu
93
94#endif
95
Note: See TracBrowser for help on using the repository browser.