1 | // $Id: RegressionNaive.h 221 2004-12-30 22:36:25Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_statistics_regression_naive_ |
---|
4 | #define _theplu_statistics_regression_naive_ |
---|
5 | |
---|
6 | // C++ tools include |
---|
7 | ///////////////////// |
---|
8 | #include "Averager.h" |
---|
9 | #include "Regression.h" |
---|
10 | #include "vector.h" |
---|
11 | #include "WeightedAverager.h" |
---|
12 | // Standard C++ includes |
---|
13 | //////////////////////// |
---|
14 | //#include <gsl/gsl_fit.h> |
---|
15 | #include <utility> |
---|
16 | |
---|
17 | namespace theplu { |
---|
18 | namespace statistics { |
---|
19 | |
---|
20 | /// |
---|
21 | /// Class for Regression. |
---|
22 | /// |
---|
23 | |
---|
24 | class RegressionNaive : public Regression |
---|
25 | { |
---|
26 | |
---|
27 | public: |
---|
28 | /// |
---|
29 | /// Default Constructor. |
---|
30 | /// |
---|
31 | RegressionNaive(void); |
---|
32 | |
---|
33 | /// |
---|
34 | /// Copy Constructor. (not implemented) |
---|
35 | /// |
---|
36 | RegressionNaive(const RegressionNaive&); |
---|
37 | |
---|
38 | /// |
---|
39 | /// Destructor |
---|
40 | /// |
---|
41 | virtual ~RegressionNaive(void) {}; |
---|
42 | |
---|
43 | /// |
---|
44 | /// This function computes the best-fit for the naive model \f$ |
---|
45 | /// y = m \f$ from vectors \a x and \a y, by minimizing \f$ |
---|
46 | /// \sum{(y_i-m)^2} \f$. |
---|
47 | /// |
---|
48 | inline void fit(const gslapi::vector& x, const gslapi::vector& y) |
---|
49 | { |
---|
50 | Averager a; |
---|
51 | for (size_t i=0; i<y.size(); i++) |
---|
52 | a.add(y(i)); |
---|
53 | m_=a.mean(); |
---|
54 | s2_=a.variance(); |
---|
55 | m_err_=a.standard_error(); |
---|
56 | } |
---|
57 | |
---|
58 | /// |
---|
59 | /// This function computes the best-fit for the naive model \f$ y |
---|
60 | /// = m \f$ from vectors \a x and \a y, by minimizing \f$ \sum |
---|
61 | /// w_i(y_i-m)^2 \f$. The weight \f$ w_i \f$ is proportional to |
---|
62 | /// the inverse of the variance for \f$ y_i \f$ |
---|
63 | /// |
---|
64 | inline void fit(const gslapi::vector& x, |
---|
65 | const gslapi::vector& y, |
---|
66 | const gslapi::vector& w) |
---|
67 | { |
---|
68 | WeightedAverager a; |
---|
69 | for (size_t i=0; i<y.size(); i++) |
---|
70 | a.add(y(i), w(i)); |
---|
71 | m_=a.mean(); |
---|
72 | m_err_=a.standard_error(); |
---|
73 | s2_=m_err_*m_err_*w.sum(); |
---|
74 | } |
---|
75 | |
---|
76 | /// |
---|
77 | /// @return the parameter m |
---|
78 | /// |
---|
79 | inline double m(void) const { return m_; } |
---|
80 | |
---|
81 | /// |
---|
82 | /// @return standard deviation of parameter m |
---|
83 | /// |
---|
84 | inline double alpha_var(void) const { return m_err_; } |
---|
85 | |
---|
86 | /// |
---|
87 | /// Function predicting value using the naive model. \a y_err is |
---|
88 | /// the expected deviation from the line for a new data point. If |
---|
89 | /// weights are used a weight can be specified for the new point. |
---|
90 | /// |
---|
91 | inline void predict(const double x, double& y, double& y_err, |
---|
92 | const double w=1.0) const |
---|
93 | { |
---|
94 | y = m_; |
---|
95 | y_err = sqrt(m_err_*m_err_ + s2_/w); |
---|
96 | } |
---|
97 | |
---|
98 | |
---|
99 | private: |
---|
100 | double s2_; // noise level ( var = s2/w in weighted case) |
---|
101 | double m_; |
---|
102 | double m_err_; |
---|
103 | }; |
---|
104 | |
---|
105 | }} // of namespace statistics and namespace theplu |
---|
106 | |
---|
107 | #endif |
---|
108 | |
---|