1 | // $Id: SVM.h 80 2004-05-05 10:26:53Z peter $ |
---|
2 | |
---|
3 | #ifndef _theplu_cpptools_svm_ |
---|
4 | #define _theplu_cpptools_svm_ |
---|
5 | |
---|
6 | // C++ tools include |
---|
7 | ///////////////////// |
---|
8 | #include "vector.h" |
---|
9 | #include "matrix.h" |
---|
10 | |
---|
11 | // Standard C++ includes |
---|
12 | //////////////////////// |
---|
13 | #include <utility> |
---|
14 | #include <vector> |
---|
15 | |
---|
16 | namespace theplu { |
---|
17 | namespace cpptools { |
---|
18 | /// |
---|
19 | /// Class for SVM using Keerthi's second modification of Platt's SMO. Also |
---|
20 | /// the elements of the kernel is not computed sequentially, but the |
---|
21 | /// complete kernel matrix is taken as input and stored in memory. This |
---|
22 | /// means that the training is faster, but also that it is not possible to |
---|
23 | /// train a large number of samples N, since the memory cost for the kernel |
---|
24 | /// matrix is N^2. The SVM object does not contain any data, hence any true |
---|
25 | /// prediction is not possible. |
---|
26 | /// |
---|
27 | class SVM |
---|
28 | { |
---|
29 | |
---|
30 | public: |
---|
31 | /// |
---|
32 | /// Constructor taking the kernel matrix and the target vector as input |
---|
33 | /// |
---|
34 | SVM(const gslapi::matrix&, const gslapi::vector&, |
---|
35 | const std::vector<size_t> = std::vector<size_t>()); |
---|
36 | |
---|
37 | /// |
---|
38 | /// Function returns \f$\alpha\f$ |
---|
39 | /// |
---|
40 | inline gslapi::vector get_alpha(void) const { return alpha_; } |
---|
41 | |
---|
42 | /// |
---|
43 | /// Function returns the C-parameter |
---|
44 | /// |
---|
45 | inline double get_c(void) const { return c_; } |
---|
46 | |
---|
47 | /// |
---|
48 | /// Function returns the output from SVM |
---|
49 | /// |
---|
50 | inline gslapi::vector get_output(void) const { return (kernel_ * alpha_.mul_elements(target_) + gslapi::vector(target_.size(),bias_) );} |
---|
51 | |
---|
52 | /// |
---|
53 | /// Changing the C-parameter |
---|
54 | /// |
---|
55 | inline void set_c(const double c) {c_ = c;} |
---|
56 | |
---|
57 | /// |
---|
58 | /// Training the SVM following Platt's SMO, with Keerti's |
---|
59 | /// modifacation. However the complete kernel is stored in memory. The |
---|
60 | /// reason for this is speed. When number of samples N is large this is |
---|
61 | /// not possible since the memory cost for the kernel scales N^2. In that |
---|
62 | /// case one should follow the SMO and calculate the kernel elements |
---|
63 | /// sequentially |
---|
64 | /// |
---|
65 | |
---|
66 | void train(void); |
---|
67 | |
---|
68 | |
---|
69 | private: |
---|
70 | gslapi::vector alpha_; |
---|
71 | double bias_; |
---|
72 | double c_; |
---|
73 | gslapi::matrix kernel_; |
---|
74 | gslapi::vector target_; |
---|
75 | bool trained_; |
---|
76 | std::vector<size_t> train_set_; |
---|
77 | double tolerance_; |
---|
78 | /// |
---|
79 | /// Private function choosing which two elements that should be |
---|
80 | /// updated. First checking for the biggest violation (output - target = |
---|
81 | /// 0) among support vectors (alpha!=0). If no violation was found check |
---|
82 | /// for sequentially among the other samples. If no violation there as |
---|
83 | /// well, stop_condition is fullfilled. |
---|
84 | /// |
---|
85 | |
---|
86 | std::pair<size_t, size_t> choose(const theplu::gslapi::vector&, |
---|
87 | const std::vector<size_t>&, |
---|
88 | const std::vector<size_t>&, |
---|
89 | const theplu::gslapi::vector&, |
---|
90 | bool&); |
---|
91 | |
---|
92 | |
---|
93 | }; |
---|
94 | |
---|
95 | |
---|
96 | |
---|
97 | |
---|
98 | }} // of namespace cpptools and namespace theplu |
---|
99 | |
---|
100 | #endif |
---|
101 | |
---|