source: trunk/src/kNNI.cc @ 234

Last change on this file since 234 was 234, checked in by Peter, 18 years ago

* empty log message *

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 1.9 KB
Line 
1// $Id: kNNI.cc 234 2005-02-21 14:53:20Z peter $
2
3#include "kNNI.h"
4
5#include <algorithm>
6#include <cmath>
7#include <fstream>
8#include <vector>
9
10#include "stl_utility.h"
11
12namespace theplu {
13namespace cpptools {
14
15  kNNI::kNNI(const gslapi::matrix& matrix,const gslapi::matrix& flag,
16             const u_int neighbours)
17    : NNI(matrix,flag,neighbours)
18  {
19    for (unsigned int i=0; i<weight_.rows(); i++)
20      for (unsigned int j=0; j<weight_.columns(); j++)
21        if (!weight_(i,j)) {
22          mv_rows_.push_back(i);
23          break;
24        }
25    //estimate();
26  }
27
28
29
30  // \hat{x_{ij}}=\frac{ \sum_{k=1,N} \frac{x_{kj}}{d_{ki}} }
31  //                   { \sum_{k=1,N} \frac{1     }{d_{ki}} },
32  // where N is defined in the paper cited in the NNI class definition
33  // documentation.
34  u_int kNNI::estimate(void)
35  {
36    using namespace std;
37    for (unsigned int i=0; i<mv_rows_.size(); i++) {
38      // Jari, avoid copying in next line
39      vector<pair<u_int,double> > distance=calculate_distances(mv_rows_[i]);
40      sort(distance.begin(),distance.end(),
41                pair_value_compare<u_int,double>());
42      for (unsigned int j=0; j<data_.columns(); j++)
43        if (!weight_(mv_rows_[i],j)) {
44          vector<u_int> knn=nearest_neighbours(j,distance);
45          double new_value=0.0;
46          double norm=0.0;
47          for (vector<u_int>::const_iterator k=knn.begin(); k!=knn.end(); k++){
48            // Jari, a small number needed here, use something standardized.
49            // Avoid division with zero (perfect match vectors)
50            double d=(distance[*k].second ? distance[*k].second : 1e-10);
51            new_value+=data_(distance[*k].first,j)/d;
52            norm+=1.0/d;
53          }
54          // No impute if no contributions from neighbours.
55          if (norm)
56            imputed_data_(mv_rows_[i],j)=new_value/norm;
57          else {
58            not_imputed_.push_back(i);
59            // if norm is zero for one column it is zero for all columns
60            // having zero weight
61            break;
62          }
63        }
64    }
65    return not_imputed_.size();
66  }
67
68
69}} // of namespace cpptools and namespace theplu
Note: See TracBrowser for help on using the repository browser.