1 | // $Id: crossvalidation_test.cc 514 2006-02-20 09:45:34Z peter $ |
---|
2 | |
---|
3 | #include <c++_tools/classifier/CrossSplitter.h> |
---|
4 | #include <c++_tools/classifier/MatrixLookup.h> |
---|
5 | #include <c++_tools/classifier/Target.h> |
---|
6 | #include <c++_tools/gslapi/matrix.h> |
---|
7 | |
---|
8 | #include <cstdlib> |
---|
9 | #include <fstream> |
---|
10 | #include <iostream> |
---|
11 | #include <string> |
---|
12 | #include <vector> |
---|
13 | |
---|
14 | int main(const int argc,const char* argv[]) |
---|
15 | { |
---|
16 | using namespace theplu; |
---|
17 | |
---|
18 | std::ostream* error; |
---|
19 | if (argc>1 && argv[1]==std::string("-v")) |
---|
20 | error = &std::cerr; |
---|
21 | else { |
---|
22 | error = new std::ofstream("/dev/null"); |
---|
23 | if (argc>1) |
---|
24 | std::cout << "crossvalidation_test -v : for printing extra information\n"; |
---|
25 | } |
---|
26 | *error << "testing crosssplitter" << std::endl; |
---|
27 | bool ok = true; |
---|
28 | |
---|
29 | std::vector<std::string> label(10,"default"); |
---|
30 | label[2]=label[7]="white"; |
---|
31 | label[4]=label[5]="black"; |
---|
32 | label[6]=label[3]="green"; |
---|
33 | label[8]=label[9]="red"; |
---|
34 | |
---|
35 | classifier::Target target(label); |
---|
36 | gslapi::matrix raw_data(10,10); |
---|
37 | classifier::MatrixLookup data(raw_data); |
---|
38 | classifier::CrossSplitter cv(target,data,3,3); |
---|
39 | |
---|
40 | std::vector<size_t> sample_count(10,0); |
---|
41 | for (cv.reset(); cv.more(); cv.next()){ |
---|
42 | std::vector<size_t> class_count(5,0); |
---|
43 | if (cv.training_index().size()+cv.validation_index().size()!=target.size()){ |
---|
44 | ok = false; |
---|
45 | *error << "ERROR: size of training samples plus " |
---|
46 | << "size of validation samples is invalid." << std::endl; |
---|
47 | } |
---|
48 | if (cv.validation_index().size()!=3 && cv.validation_index().size()!=4){ |
---|
49 | ok = false; |
---|
50 | *error << "ERROR: size of validation samples is invalid." |
---|
51 | << "expected size to be 3 or 4" << std::endl; |
---|
52 | } |
---|
53 | for (size_t i=0; i<cv.validation_index().size(); i++) { |
---|
54 | assert(cv.validation_index()[i]<sample_count.size()); |
---|
55 | sample_count[cv.validation_index()[i]]++; |
---|
56 | } |
---|
57 | for (size_t i=0; i<cv.training_index().size(); i++) { |
---|
58 | class_count[target(cv.training_index()[i])]++; |
---|
59 | } |
---|
60 | for (size_t i=0; i<class_count.size(); i++) |
---|
61 | if (class_count[i]==0){ |
---|
62 | ok = false; |
---|
63 | *error << "ERROR: class " << i << " was not in training set." |
---|
64 | << " Expected at least one sample from each class." |
---|
65 | << std::endl; |
---|
66 | } |
---|
67 | } |
---|
68 | for (size_t i=0; i<sample_count.size(); i++){ |
---|
69 | if (sample_count[i]!=1){ |
---|
70 | ok = false; |
---|
71 | *error << "ERROR: sample " << i << " was validated " << sample_count[i] |
---|
72 | << " times." << " Expected to be 1 time" << std::endl; |
---|
73 | } |
---|
74 | } |
---|
75 | |
---|
76 | if (error!=&std::cerr) |
---|
77 | delete error; |
---|
78 | |
---|
79 | if (ok) |
---|
80 | return 0; |
---|
81 | return -1; |
---|
82 | } |
---|