1 | // $Id: crossvalidation_test.cc 781 2007-03-05 19:44:03Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/classifier/CrossValidationSampler.h" |
---|
25 | #include "yat/classifier/SubsetGenerator.h" |
---|
26 | #include "yat/classifier/MatrixLookup.h" |
---|
27 | #include "yat/classifier/Target.h" |
---|
28 | #include "yat/utility/matrix.h" |
---|
29 | |
---|
30 | #include <cassert> |
---|
31 | #include <cstdlib> |
---|
32 | #include <fstream> |
---|
33 | #include <iostream> |
---|
34 | #include <string> |
---|
35 | #include <vector> |
---|
36 | |
---|
37 | // forward declaration |
---|
38 | void class_count_test(const std::vector<size_t>&, std::ostream*, bool&); |
---|
39 | void sample_count_test(const std::vector<size_t>&, std::ostream*, bool&); |
---|
40 | |
---|
41 | |
---|
42 | int main(const int argc,const char* argv[]) |
---|
43 | { |
---|
44 | using namespace theplu::yat; |
---|
45 | |
---|
46 | std::ostream* error; |
---|
47 | if (argc>1 && argv[1]==std::string("-v")) |
---|
48 | error = &std::cerr; |
---|
49 | else { |
---|
50 | error = new std::ofstream("/dev/null"); |
---|
51 | if (argc>1) |
---|
52 | std::cout << "crossvalidation_test -v : for printing extra information\n"; |
---|
53 | } |
---|
54 | *error << "testing crosssplitter" << std::endl; |
---|
55 | bool ok = true; |
---|
56 | |
---|
57 | std::vector<std::string> label(10,"default"); |
---|
58 | label[2]=label[7]="white"; |
---|
59 | label[4]=label[5]="black"; |
---|
60 | label[6]=label[3]="green"; |
---|
61 | label[8]=label[9]="red"; |
---|
62 | |
---|
63 | classifier::Target target(label); |
---|
64 | utility::matrix raw_data(10,10); |
---|
65 | classifier::MatrixLookup data(raw_data); |
---|
66 | classifier::CrossValidationSampler cv(target,3,3); |
---|
67 | |
---|
68 | std::vector<size_t> sample_count(10,0); |
---|
69 | for (size_t j=0; j<cv.size(); ++j){ |
---|
70 | std::vector<size_t> class_count(5,0); |
---|
71 | assert(j<cv.size()); |
---|
72 | if (cv.training_index(j).size()+cv.validation_index(j).size()!= |
---|
73 | target.size()){ |
---|
74 | ok = false; |
---|
75 | *error << "ERROR: size of training samples plus " |
---|
76 | << "size of validation samples is invalid." << std::endl; |
---|
77 | } |
---|
78 | if (cv.validation_index(j).size()!=3 && cv.validation_index(j).size()!=4){ |
---|
79 | ok = false; |
---|
80 | *error << "ERROR: size of validation samples is invalid." |
---|
81 | << "expected size to be 3 or 4" << std::endl; |
---|
82 | } |
---|
83 | for (size_t i=0; i<cv.validation_index(j).size(); i++) { |
---|
84 | assert(cv.validation_index(j)[i]<sample_count.size()); |
---|
85 | sample_count[cv.validation_index(j)[i]]++; |
---|
86 | } |
---|
87 | for (size_t i=0; i<cv.training_index(j).size(); i++) { |
---|
88 | class_count[target(cv.training_index(j)[i])]++; |
---|
89 | } |
---|
90 | class_count_test(class_count,error,ok); |
---|
91 | } |
---|
92 | sample_count_test(sample_count,error,ok); |
---|
93 | |
---|
94 | // |
---|
95 | // Test two nested CrossSplitters |
---|
96 | // |
---|
97 | |
---|
98 | *error << "\ntesting two nested crossplitters" << std::endl; |
---|
99 | label.resize(9); |
---|
100 | label[0]=label[1]=label[2]="0"; |
---|
101 | label[3]=label[4]=label[5]="1"; |
---|
102 | label[6]=label[7]=label[8]="2"; |
---|
103 | |
---|
104 | target=classifier::Target(label); |
---|
105 | utility::matrix raw_data2(2,9); |
---|
106 | for(size_t i=0;i<raw_data2.rows();i++) |
---|
107 | for(size_t j=0;j<raw_data2.columns();j++) |
---|
108 | raw_data2(i,j)=i*10+10+j+1; |
---|
109 | |
---|
110 | classifier::MatrixLookup data2(raw_data2); |
---|
111 | classifier::CrossValidationSampler cv2(target,3,3); |
---|
112 | classifier::SubsetGenerator cv_test(cv2,data2); |
---|
113 | |
---|
114 | std::vector<size_t> test_sample_count(9,0); |
---|
115 | std::vector<size_t> test_class_count(3,0); |
---|
116 | std::vector<double> test_value1(4,0); |
---|
117 | std::vector<double> test_value2(4,0); |
---|
118 | std::vector<double> t_value(4,0); |
---|
119 | std::vector<double> v_value(4,0); |
---|
120 | for(u_long k=0;k<cv_test.size();k++) { |
---|
121 | |
---|
122 | const classifier::DataLookup2D& tv_view=cv_test.training_data(k); |
---|
123 | const classifier::Target& tv_target=cv_test.training_target(k); |
---|
124 | const std::vector<size_t>& tv_index=cv_test.training_index(k); |
---|
125 | const classifier::DataLookup2D& test_view=cv_test.validation_data(k); |
---|
126 | const classifier::Target& test_target=cv_test.validation_target(k); |
---|
127 | const std::vector<size_t>& test_index=cv_test.validation_index(k); |
---|
128 | |
---|
129 | for (size_t i=0; i<test_index.size(); i++) { |
---|
130 | assert(test_index[i]<sample_count.size()); |
---|
131 | test_sample_count[test_index[i]]++; |
---|
132 | test_class_count[target(test_index[i])]++; |
---|
133 | test_value1[0]+=test_view(0,i); |
---|
134 | test_value2[0]+=test_view(1,i); |
---|
135 | test_value1[test_target(i)+1]+=test_view(0,i); |
---|
136 | test_value2[test_target(i)+1]+=test_view(1,i); |
---|
137 | if(test_target(i)!=target(test_index[i])) { |
---|
138 | ok=false; |
---|
139 | *error << "ERROR: incorrect mapping of test indices" << std:: endl; |
---|
140 | } |
---|
141 | } |
---|
142 | |
---|
143 | classifier::CrossValidationSampler sampler_training(tv_target,2,2); |
---|
144 | classifier::SubsetGenerator cv_training(sampler_training,tv_view); |
---|
145 | std::vector<size_t> v_sample_count(6,0); |
---|
146 | std::vector<size_t> t_sample_count(6,0); |
---|
147 | std::vector<size_t> v_class_count(3,0); |
---|
148 | std::vector<size_t> t_class_count(3,0); |
---|
149 | std::vector<size_t> t_class_count2(3,0); |
---|
150 | for(u_long l=0;l<cv_training.size();l++) { |
---|
151 | const classifier::DataLookup2D& t_view=cv_training.training_data(l); |
---|
152 | const classifier::Target& t_target=cv_training.training_target(l); |
---|
153 | const std::vector<size_t>& t_index=cv_training.training_index(l); |
---|
154 | const classifier::DataLookup2D& v_view=cv_training.validation_data(l); |
---|
155 | const classifier::Target& v_target=cv_training.validation_target(l); |
---|
156 | const std::vector<size_t>& v_index=cv_training.validation_index(l); |
---|
157 | |
---|
158 | if (test_index.size()+tv_index.size()!=target.size() |
---|
159 | || t_index.size()+v_index.size() != tv_target.size() |
---|
160 | || test_index.size()+v_index.size()+t_index.size() != target.size()){ |
---|
161 | ok = false; |
---|
162 | *error << "ERROR: size of training samples, validation samples " |
---|
163 | << "and test samples in is invalid." |
---|
164 | << std::endl; |
---|
165 | } |
---|
166 | if (test_index.size()!=3 || tv_index.size()!=6 || t_index.size()!=3 || |
---|
167 | v_index.size()!=3){ |
---|
168 | ok = false; |
---|
169 | *error << "ERROR: size of training, validation, and test samples" |
---|
170 | << " is invalid." |
---|
171 | << " Expected sizes to be 3" << std::endl; |
---|
172 | } |
---|
173 | |
---|
174 | std::vector<size_t> tv_sample_count(6,0); |
---|
175 | for (size_t i=0; i<t_index.size(); i++) { |
---|
176 | assert(t_index[i]<t_sample_count.size()); |
---|
177 | tv_sample_count[t_index[i]]++; |
---|
178 | t_sample_count[t_index[i]]++; |
---|
179 | t_class_count[t_target(i)]++; |
---|
180 | t_class_count2[tv_target(t_index[i])]++; |
---|
181 | t_value[0]+=t_view(0,i); |
---|
182 | t_value[t_target(i)+1]+=t_view(0,i); |
---|
183 | } |
---|
184 | for (size_t i=0; i<v_index.size(); i++) { |
---|
185 | assert(v_index[i]<v_sample_count.size()); |
---|
186 | tv_sample_count[v_index[i]]++; |
---|
187 | v_sample_count[v_index[i]]++; |
---|
188 | v_class_count[v_target(i)]++; |
---|
189 | v_value[0]+=v_view(0,i); |
---|
190 | v_value[v_target(i)+1]+=v_view(0,i); |
---|
191 | } |
---|
192 | |
---|
193 | sample_count_test(tv_sample_count,error,ok); |
---|
194 | |
---|
195 | } |
---|
196 | sample_count_test(v_sample_count,error,ok); |
---|
197 | sample_count_test(t_sample_count,error,ok); |
---|
198 | |
---|
199 | class_count_test(t_class_count,error,ok); |
---|
200 | class_count_test(t_class_count2,error,ok); |
---|
201 | class_count_test(v_class_count,error,ok); |
---|
202 | |
---|
203 | |
---|
204 | } |
---|
205 | sample_count_test(test_sample_count,error,ok); |
---|
206 | class_count_test(test_class_count,error,ok); |
---|
207 | |
---|
208 | if(test_value1[0]!=135 || test_value1[1]!=36 || test_value1[2]!=45 || |
---|
209 | test_value1[3]!=54) { |
---|
210 | ok=false; |
---|
211 | *error << "ERROR: incorrect sums of test values in row 1" |
---|
212 | << " found: " << test_value1[0] << ", " << test_value1[1] |
---|
213 | << ", " << test_value1[2] << " and " << test_value1[3] |
---|
214 | << std::endl; |
---|
215 | } |
---|
216 | |
---|
217 | |
---|
218 | if(test_value2[0]!=225 || test_value2[1]!=66 || test_value2[2]!=75 || |
---|
219 | test_value2[3]!=84) { |
---|
220 | ok=false; |
---|
221 | *error << "ERROR: incorrect sums of test values in row 2" |
---|
222 | << " found: " << test_value2[0] << ", " << test_value2[1] |
---|
223 | << ", " << test_value2[2] << " and " << test_value2[3] |
---|
224 | << std::endl; |
---|
225 | } |
---|
226 | |
---|
227 | if(t_value[0]!=270 || t_value[1]!=72 || t_value[2]!=90 || t_value[3]!=108) { |
---|
228 | ok=false; |
---|
229 | *error << "ERROR: incorrect sums of training values in row 1" |
---|
230 | << " found: " << t_value[0] << ", " << t_value[1] |
---|
231 | << ", " << t_value[2] << " and " << t_value[3] |
---|
232 | << std::endl; |
---|
233 | } |
---|
234 | |
---|
235 | if(v_value[0]!=270 || v_value[1]!=72 || v_value[2]!=90 || v_value[3]!=108) { |
---|
236 | ok=false; |
---|
237 | *error << "ERROR: incorrect sums of validation values in row 1" |
---|
238 | << " found: " << v_value[0] << ", " << v_value[1] |
---|
239 | << ", " << v_value[2] << " and " << v_value[3] |
---|
240 | << std::endl; |
---|
241 | } |
---|
242 | |
---|
243 | |
---|
244 | |
---|
245 | if (error!=&std::cerr) |
---|
246 | delete error; |
---|
247 | |
---|
248 | if (ok) |
---|
249 | return 0; |
---|
250 | return -1; |
---|
251 | } |
---|
252 | |
---|
253 | |
---|
254 | void class_count_test(const std::vector<size_t>& class_count, |
---|
255 | std::ostream* error, bool& ok) |
---|
256 | { |
---|
257 | for (size_t i=0; i<class_count.size(); i++) |
---|
258 | if (class_count[i]==0){ |
---|
259 | ok = false; |
---|
260 | *error << "ERROR: class " << i << " was not in set." |
---|
261 | << " Expected at least one sample from each class." |
---|
262 | << std::endl; |
---|
263 | } |
---|
264 | } |
---|
265 | |
---|
266 | void sample_count_test(const std::vector<size_t>& sample_count, |
---|
267 | std::ostream* error, bool& ok) |
---|
268 | { |
---|
269 | for (size_t i=0; i<sample_count.size(); i++){ |
---|
270 | if (sample_count[i]!=1){ |
---|
271 | ok = false; |
---|
272 | *error << "ERROR: sample " << i << " was in a group " << sample_count[i] |
---|
273 | << " times." << " Expected to be 1 time" << std::endl; |
---|
274 | } |
---|
275 | } |
---|
276 | } |
---|