1 | // $Id: feature_selection_test.cc 865 2007-09-10 19:41:04Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2006 Jari Häkkinen, Peter Johansson |
---|
5 | Copyright (C) 2007 Peter Johansson |
---|
6 | |
---|
7 | This file is part of the yat library, http://trac.thep.lu.se/trac/yat |
---|
8 | |
---|
9 | The yat library is free software; you can redistribute it and/or |
---|
10 | modify it under the terms of the GNU General Public License as |
---|
11 | published by the Free Software Foundation; either version 2 of the |
---|
12 | License, or (at your option) any later version. |
---|
13 | |
---|
14 | The yat library is distributed in the hope that it will be useful, |
---|
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License |
---|
20 | along with this program; if not, write to the Free Software |
---|
21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
22 | 02111-1307, USA. |
---|
23 | */ |
---|
24 | |
---|
25 | #include "yat/classifier/DataLookupWeighted1D.h" |
---|
26 | #include "yat/classifier/FeatureSelectorIR.h" |
---|
27 | #include "yat/classifier/FeatureSelectorRandom.h" |
---|
28 | #include "yat/classifier/MatrixLookupWeighted.h" |
---|
29 | #include "yat/classifier/Target.h" |
---|
30 | #include "yat/statistics/SNRScore.h" |
---|
31 | |
---|
32 | #include "yat/utility/matrix.h" |
---|
33 | |
---|
34 | #include <algorithm> |
---|
35 | #include <cmath> |
---|
36 | #include <fstream> |
---|
37 | #include <iterator> |
---|
38 | #include <iostream> |
---|
39 | #include <string> |
---|
40 | |
---|
41 | using namespace theplu::yat; |
---|
42 | |
---|
43 | int main(const int argc,const char* argv[]) |
---|
44 | { |
---|
45 | std::ostream* error; |
---|
46 | if (argc>1 && argv[1]==std::string("-v")) |
---|
47 | error = &std::cerr; |
---|
48 | else { |
---|
49 | error = new std::ofstream("/dev/null"); |
---|
50 | if (argc>1) |
---|
51 | std::cout << "feature_selection -v : for printing extra information\n"; |
---|
52 | } |
---|
53 | *error << "testing feature_selection" << std::endl; |
---|
54 | bool ok = true; |
---|
55 | |
---|
56 | statistics::SNRScore snr; |
---|
57 | classifier::FeatureSelectorIR f(snr, 12); |
---|
58 | classifier::FeatureSelectorRandom f2(12); |
---|
59 | |
---|
60 | *error << "Reading in Sorlie data to identify top gene ..." << std::endl; |
---|
61 | std::ifstream is("data/sorlie_centroid_data.txt"); |
---|
62 | utility::matrix data(is,'\t'); |
---|
63 | is.close(); |
---|
64 | |
---|
65 | is.open("data/sorlie_centroid_classes.txt"); |
---|
66 | classifier::Target targets(is); |
---|
67 | is.close(); |
---|
68 | |
---|
69 | *error << "... done" << std::endl; |
---|
70 | |
---|
71 | // Generate weight matrix with 0 for missing values and 1 for others. |
---|
72 | utility::matrix weights(data.rows(),data.columns(),0.0); |
---|
73 | for(size_t i=0;i<data.rows();++i) |
---|
74 | for(size_t j=0;j<data.columns();++j) |
---|
75 | if(!std::isnan(data(i,j))) |
---|
76 | weights(i,j)=1.0; |
---|
77 | |
---|
78 | classifier::MatrixLookupWeighted dataviewweighted(data,weights); |
---|
79 | |
---|
80 | f2.update(dataviewweighted,targets); |
---|
81 | *error << "\nRandomly ordered features (top 12):\n"; |
---|
82 | std::vector<size_t> features=f2.features(); |
---|
83 | std::copy(features.begin(),features.end(), |
---|
84 | std::ostream_iterator<size_t>(*error," ")); |
---|
85 | *error << std::endl; |
---|
86 | |
---|
87 | f.update(dataviewweighted,targets); |
---|
88 | *error << "\nSNR ordered ordered features (top 12):\n"; |
---|
89 | features=f.features(); |
---|
90 | std::copy(features.begin(),features.end(), |
---|
91 | std::ostream_iterator<size_t>(*error," ")); |
---|
92 | *error << std::endl; |
---|
93 | |
---|
94 | size_t best_feature=features[0]; |
---|
95 | if(best_feature!=69) { |
---|
96 | *error << "\nERROR: Incorrect best feature found!\n" << std::endl; |
---|
97 | ok=0; |
---|
98 | } |
---|
99 | |
---|
100 | classifier::DataLookupWeighted1D row(dataviewweighted,best_feature,true); |
---|
101 | double score_diff=fabs(snr.score(targets,row)-1.47804); |
---|
102 | if(score_diff>0.00001) { |
---|
103 | *error << "\nERROR: Best score not what expected!\n" << std::endl; |
---|
104 | ok=0; |
---|
105 | } |
---|
106 | |
---|
107 | // Re-rank the best features |
---|
108 | classifier::MatrixLookupWeighted ranked=f.get(dataviewweighted); |
---|
109 | f.update(ranked,targets); |
---|
110 | features=f.features(); |
---|
111 | for(size_t i=0;i<features.size();i++) { |
---|
112 | if(features[i]!=i) { |
---|
113 | ok=0; |
---|
114 | *error << "ERROR: Problem with top-ranked feature" << std::endl; |
---|
115 | } |
---|
116 | } |
---|
117 | |
---|
118 | if (ok) |
---|
119 | return 0; |
---|
120 | return -1; |
---|
121 | } |
---|