1 | // $Id: knn_test.cc 999 2007-12-23 20:03:12Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2007 Peter Johansson, Markus Ringnér |
---|
5 | |
---|
6 | This file is part of the yat library, http://trac.thep.lu.se/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/classifier/KNN.h" |
---|
25 | #include "yat/classifier/MatrixLookupWeighted.h" |
---|
26 | #include "yat/statistics/euclidean_vector_distance.h" |
---|
27 | #include "yat/statistics/pearson_vector_distance.h" |
---|
28 | #include "yat/utility/matrix.h" |
---|
29 | |
---|
30 | |
---|
31 | #include <cassert> |
---|
32 | #include <fstream> |
---|
33 | #include <iostream> |
---|
34 | #include <list> |
---|
35 | #include <string> |
---|
36 | #include <vector> |
---|
37 | |
---|
38 | |
---|
39 | using namespace theplu::yat; |
---|
40 | |
---|
41 | int main(const int argc,const char* argv[]) |
---|
42 | |
---|
43 | { |
---|
44 | std::ostream* error; |
---|
45 | if (argc>1 && argv[1]==std::string("-v")) |
---|
46 | error = &std::cerr; |
---|
47 | else { |
---|
48 | error = new std::ofstream("/dev/null"); |
---|
49 | if (argc>1) |
---|
50 | std::cout << "knn_test -v : for printing extra information\n"; |
---|
51 | } |
---|
52 | *error << "testing knn" << std::endl; |
---|
53 | bool ok = true; |
---|
54 | |
---|
55 | std::ifstream is("data/sorlie_centroid_data.txt"); |
---|
56 | utility::matrix data(is,'\t'); |
---|
57 | is.close(); |
---|
58 | |
---|
59 | is.open("data/sorlie_centroid_classes.txt"); |
---|
60 | classifier::Target targets(is); |
---|
61 | is.close(); |
---|
62 | |
---|
63 | // Generate weight matrix with 0 for missing values and 1 for others. |
---|
64 | utility::matrix weights(data.rows(),data.columns(),0.0); |
---|
65 | utility::nan(data,weights); |
---|
66 | |
---|
67 | classifier::MatrixLookupWeighted dataviewweighted(data,weights); |
---|
68 | classifier::KNN<statistics::pearson_vector_distance_tag> knn(dataviewweighted,targets); |
---|
69 | *error << "training KNN" << std::endl; |
---|
70 | knn.train(); |
---|
71 | |
---|
72 | utility::matrix prediction; |
---|
73 | knn.predict(dataviewweighted,prediction); |
---|
74 | *error << prediction << std::endl; |
---|
75 | |
---|
76 | if(!ok) { |
---|
77 | *error << "knn_test failed" << std::endl; |
---|
78 | } |
---|
79 | else { |
---|
80 | *error << "OK" << std::endl; |
---|
81 | } |
---|
82 | if (error!=&std::cerr) |
---|
83 | delete error; |
---|
84 | if (ok=true) |
---|
85 | return 0; |
---|
86 | return -1; |
---|
87 | } |
---|
88 | |
---|
89 | |
---|