1 | // $Id: ncc_test.cc 1075 2008-02-12 12:55:31Z markus $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2006 Jari Häkkinen, Markus Ringnér |
---|
5 | |
---|
6 | This file is part of the yat library, http://trac.thep.lu.se/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/classifier/IGP.h" |
---|
25 | #include "yat/classifier/Kernel_MEV.h" |
---|
26 | #include "yat/classifier/KernelLookup.h" |
---|
27 | #include "yat/classifier/MatrixLookup.h" |
---|
28 | #include "yat/classifier/MatrixLookupWeighted.h" |
---|
29 | #include "yat/classifier/NCC.h" |
---|
30 | #include "yat/classifier/PolynomialKernelFunction.h" |
---|
31 | #include "yat/classifier/Target.h" |
---|
32 | #include "yat/utility/matrix.h" |
---|
33 | #include "yat/statistics/EuclideanDistance.h" |
---|
34 | #include "yat/statistics/PearsonDistance.h" |
---|
35 | #include "yat/utility/utility.h" |
---|
36 | |
---|
37 | #include <cassert> |
---|
38 | #include <fstream> |
---|
39 | #include <iostream> |
---|
40 | #include <stdexcept> |
---|
41 | #include <sstream> |
---|
42 | #include <string> |
---|
43 | #include <limits> |
---|
44 | #include <cmath> |
---|
45 | |
---|
46 | using namespace theplu::yat; |
---|
47 | |
---|
48 | double deviation(const utility::matrix& a, const utility::matrix& b) { |
---|
49 | double sl=0; |
---|
50 | for (size_t i=0; i<a.rows(); i++){ |
---|
51 | for (size_t j=0; j<a.columns(); j++){ |
---|
52 | sl += fabs(a(i,j)-b(i,j)); |
---|
53 | } |
---|
54 | } |
---|
55 | sl /= (a.columns()*a.rows()); |
---|
56 | return sl; |
---|
57 | } |
---|
58 | |
---|
59 | int main(const int argc,const char* argv[]) |
---|
60 | { |
---|
61 | |
---|
62 | std::ostream* error; |
---|
63 | if (argc>1 && argv[1]==std::string("-v")) |
---|
64 | error = &std::cerr; |
---|
65 | else { |
---|
66 | error = new std::ofstream("/dev/null"); |
---|
67 | if (argc>1) |
---|
68 | std::cout << "ncc_test -v : for printing extra information\n"; |
---|
69 | } |
---|
70 | *error << "testing ncc" << std::endl; |
---|
71 | bool ok = true; |
---|
72 | |
---|
73 | ///////////////////////////////////////////// |
---|
74 | // First test of constructor and training |
---|
75 | ///////////////////////////////////////////// |
---|
76 | classifier::MatrixLookup ml(4,4); |
---|
77 | std::vector<std::string> vec(4, "pos"); |
---|
78 | vec[3]="bjds"; |
---|
79 | classifier::Target target(vec); |
---|
80 | classifier::NCC<statistics::EuclideanDistance> ncctmp(ml,target); |
---|
81 | *error << "training...\n"; |
---|
82 | ncctmp.train(); |
---|
83 | *error << "done\n"; |
---|
84 | |
---|
85 | ///////////////////////////////////////////// |
---|
86 | // A test of predictions using unweighted data |
---|
87 | ///////////////////////////////////////////// |
---|
88 | *error << "test of predictions using unweighted test data\n"; |
---|
89 | utility::matrix data1(3,4); |
---|
90 | for(size_t i=0;i<3;i++) { |
---|
91 | data1(i,0)=3-i; |
---|
92 | data1(i,1)=5-i; |
---|
93 | data1(i,2)=i+1; |
---|
94 | data1(i,3)=i+3; |
---|
95 | } |
---|
96 | std::vector<std::string> vec1(4, "pos"); |
---|
97 | vec1[0]="neg"; |
---|
98 | vec1[1]="neg"; |
---|
99 | |
---|
100 | classifier::MatrixLookup ml1(data1); |
---|
101 | classifier::Target target1(vec1); |
---|
102 | |
---|
103 | classifier::NCC<statistics::EuclideanDistance> ncc1(ml1,target1); |
---|
104 | ncc1.train(); |
---|
105 | utility::matrix prediction1; |
---|
106 | ncc1.predict(ml1,prediction1); |
---|
107 | double slack_bound=2e-7; |
---|
108 | utility::matrix result1(2,4); |
---|
109 | result1(0,0)=result1(0,1)=result1(1,2)=result1(1,3)=sqrt(3.0); |
---|
110 | result1(0,2)=result1(0,3)=result1(1,0)=result1(1,1)=sqrt(11.0); |
---|
111 | double slack = deviation(prediction1,result1); |
---|
112 | if (slack > slack_bound || std::isnan(slack)){ |
---|
113 | *error << "Difference to expected prediction too large\n"; |
---|
114 | *error << "slack: " << slack << std::endl; |
---|
115 | *error << "expected less than " << slack_bound << std::endl; |
---|
116 | ok = false; |
---|
117 | } |
---|
118 | |
---|
119 | ////////////////////////////////////////////////////////////////////////// |
---|
120 | // A test of predictions using unweighted training and weighted test data |
---|
121 | ////////////////////////////////////////////////////////////////////////// |
---|
122 | *error << "test of predictions using unweighted training and weighted test data\n"; |
---|
123 | utility::matrix weights1(3,4,1.0); |
---|
124 | weights1(0,0)=weights1(1,1)=weights1(2,2)=weights1(1,3)=0.0; |
---|
125 | classifier::MatrixLookupWeighted mlw1(data1,weights1); |
---|
126 | ncc1.predict(mlw1,prediction1); |
---|
127 | result1(0,2)=result1(0,3)=result1(1,0)=result1(1,1)=sqrt(15.0); |
---|
128 | slack = deviation(prediction1,result1); |
---|
129 | if (slack > slack_bound || std::isnan(slack)){ |
---|
130 | *error << "Difference to expected prediction too large\n"; |
---|
131 | *error << "slack: " << slack << std::endl; |
---|
132 | *error << "expected less than " << slack_bound << std::endl; |
---|
133 | ok = false; |
---|
134 | } |
---|
135 | |
---|
136 | |
---|
137 | |
---|
138 | ////////////////////////////////////////////////////////////////////////// |
---|
139 | // A test of predictions using Sorlie data |
---|
140 | ////////////////////////////////////////////////////////////////////////// |
---|
141 | *error << "test with Sorlie data\n"; |
---|
142 | std::ifstream is("data/sorlie_centroid_data.txt"); |
---|
143 | utility::matrix data(is,'\t'); |
---|
144 | is.close(); |
---|
145 | |
---|
146 | is.open("data/sorlie_centroid_classes.txt"); |
---|
147 | classifier::Target targets(is); |
---|
148 | is.close(); |
---|
149 | |
---|
150 | // Generate weight matrix with 0 for missing values and 1 for others. |
---|
151 | utility::matrix weights(data.rows(),data.columns(),0.0); |
---|
152 | utility::nan(data,weights); |
---|
153 | |
---|
154 | classifier::MatrixLookupWeighted dataviewweighted(data,weights); |
---|
155 | classifier::NCC<statistics::PearsonDistance> ncc(dataviewweighted,targets); |
---|
156 | *error << "training...\n"; |
---|
157 | ncc.train(); |
---|
158 | |
---|
159 | // Comparing the centroids to stored result |
---|
160 | is.open("data/sorlie_centroids.txt"); |
---|
161 | utility::matrix centroids(is); |
---|
162 | is.close(); |
---|
163 | |
---|
164 | if(centroids.rows() != ncc.centroids().rows() || |
---|
165 | centroids.columns() != ncc.centroids().columns()) { |
---|
166 | *error << "Error in the dimensionality of centroids\n"; |
---|
167 | *error << "Nof rows: " << centroids.rows() << " expected: " |
---|
168 | << ncc.centroids().rows() << std::endl; |
---|
169 | *error << "Nof columns: " << centroids.columns() << " expected: " |
---|
170 | << ncc.centroids().columns() << std::endl; |
---|
171 | } |
---|
172 | |
---|
173 | slack = deviation(centroids,ncc.centroids()); |
---|
174 | if (slack > slack_bound || std::isnan(slack)){ |
---|
175 | *error << "Difference to stored centroids too large\n"; |
---|
176 | *error << "slack: " << slack << std::endl; |
---|
177 | *error << "expected less than " << slack_bound << std::endl; |
---|
178 | ok = false; |
---|
179 | } |
---|
180 | |
---|
181 | *error << "...predicting...\n"; |
---|
182 | utility::matrix prediction; |
---|
183 | ncc.predict(dataviewweighted,prediction); |
---|
184 | |
---|
185 | // Comparing the prediction to stored result |
---|
186 | is.open("data/sorlie_centroid_predictions.txt"); |
---|
187 | utility::matrix result(is,'\t'); |
---|
188 | is.close(); |
---|
189 | |
---|
190 | slack = deviation(result,prediction); |
---|
191 | if (slack > slack_bound || std::isnan(slack)){ |
---|
192 | *error << "Difference to stored prediction too large\n"; |
---|
193 | *error << "slack: " << slack << std::endl; |
---|
194 | *error << "expected less than " << slack_bound << std::endl; |
---|
195 | ok = false; |
---|
196 | } |
---|
197 | *error << "done\n"; |
---|
198 | |
---|
199 | ////////////////////////////////////////////////////////////////////////// |
---|
200 | // Testing rejection of KernelLookups |
---|
201 | ////////////////////////////////////////////////////////////////////////// |
---|
202 | classifier::PolynomialKernelFunction kf; |
---|
203 | classifier::Kernel_MEV kernel(ml,kf); |
---|
204 | classifier::DataLookup2D* dl_kernel = new classifier::KernelLookup(kernel); |
---|
205 | bool catch_error=false; |
---|
206 | try { |
---|
207 | catch_error=false; // should catch error here |
---|
208 | *error << ncc.make_classifier(*dl_kernel,target) << std::endl; |
---|
209 | } |
---|
210 | catch (std::runtime_error) { |
---|
211 | *error << "caught expected bad cast runtime_error" << std::endl; |
---|
212 | catch_error=true; |
---|
213 | } |
---|
214 | if(!catch_error) { |
---|
215 | ok=false; |
---|
216 | } |
---|
217 | try { |
---|
218 | catch_error=false; // should catch error here |
---|
219 | ncc.predict(*dl_kernel,prediction); |
---|
220 | } |
---|
221 | catch (std::runtime_error) { |
---|
222 | *error << "caught expected bad cast runtime_error" << std::endl; |
---|
223 | catch_error=true; |
---|
224 | } |
---|
225 | if(!catch_error) { |
---|
226 | ok=false; |
---|
227 | } |
---|
228 | delete dl_kernel; |
---|
229 | |
---|
230 | if(ok) |
---|
231 | *error << "OK" << std::endl; |
---|
232 | else |
---|
233 | *error << "FAILED" << std::endl; |
---|
234 | |
---|
235 | if (error!=&std::cerr) |
---|
236 | delete error; |
---|
237 | |
---|
238 | if(ok) |
---|
239 | return 0; |
---|
240 | return -1; |
---|
241 | } |
---|