1 | // $Id: normalization.cc 3342 2014-11-06 05:26:24Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2008, 2009 Jari Häkkinen, Peter Johansson |
---|
5 | Copyright (C) 2010, 2012, 2014 Peter Johansson |
---|
6 | |
---|
7 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
8 | |
---|
9 | The yat library is free software; you can redistribute it and/or |
---|
10 | modify it under the terms of the GNU General Public License as |
---|
11 | published by the Free Software Foundation; either version 3 of the |
---|
12 | License, or (at your option) any later version. |
---|
13 | |
---|
14 | The yat library is distributed in the hope that it will be useful, |
---|
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License |
---|
20 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
21 | */ |
---|
22 | |
---|
23 | #include <config.h> |
---|
24 | |
---|
25 | #include "Suite.h" |
---|
26 | |
---|
27 | #include "yat/normalizer/Centralizer.h" |
---|
28 | #include "yat/normalizer/ColumnNormalizer.h" |
---|
29 | #include "yat/normalizer/Gauss.h" |
---|
30 | #include "yat/normalizer/qQuantileNormalizer.h" |
---|
31 | #include "yat/normalizer/QuantileNormalizer.h" |
---|
32 | #include "yat/normalizer/RowNormalizer.h" |
---|
33 | #include "yat/normalizer/Spearman.h" |
---|
34 | #include "yat/normalizer/Zscore.h" |
---|
35 | |
---|
36 | #include "yat/utility/DataIterator.h" |
---|
37 | #include "yat/utility/FileUtil.h" |
---|
38 | #include "yat/utility/Matrix.h" |
---|
39 | #include "yat/utility/MatrixWeighted.h" |
---|
40 | #include "yat/utility/WeightIterator.h" |
---|
41 | |
---|
42 | #include <boost/concept_archetype.hpp> |
---|
43 | #include <boost/iterator/iterator_archetypes.hpp> |
---|
44 | |
---|
45 | #include <climits> |
---|
46 | #include <fstream> |
---|
47 | #include <iterator> |
---|
48 | #include <limits> |
---|
49 | #include <vector> |
---|
50 | |
---|
51 | using namespace theplu::yat; |
---|
52 | void test_centralizer(test::Suite&); |
---|
53 | void test_column_normalize(test::Suite&); |
---|
54 | void test_gauss_normalize(test::Suite&); |
---|
55 | void test_qquantile_normalize(test::Suite&); |
---|
56 | void test_qquantile_normalize_weighted(test::Suite&); |
---|
57 | void test_quantile_normalize(test::Suite&); |
---|
58 | void test_row_normalize(test::Suite&); |
---|
59 | void test_spearman(test::Suite&); |
---|
60 | void test_spearman_weighted(test::Suite&); |
---|
61 | void test_z_score(test::Suite&); |
---|
62 | |
---|
63 | int main(int argc, char* argv[]) |
---|
64 | { |
---|
65 | test::Suite suite(argc, argv); |
---|
66 | suite.err() << "testing normalizations ... " << std::endl; |
---|
67 | |
---|
68 | test_centralizer(suite); |
---|
69 | test_column_normalize(suite); |
---|
70 | test_qquantile_normalize(suite); |
---|
71 | test_qquantile_normalize_weighted(suite); |
---|
72 | test_quantile_normalize(suite); |
---|
73 | test_gauss_normalize(suite); |
---|
74 | test_row_normalize(suite); |
---|
75 | test_spearman(suite); |
---|
76 | test_z_score(suite); |
---|
77 | |
---|
78 | return suite.return_value(); |
---|
79 | } |
---|
80 | |
---|
81 | |
---|
82 | void test_centralizer(test::Suite& suite) |
---|
83 | { |
---|
84 | suite.err() << "Testing Centralizer\n"; |
---|
85 | std::vector<double> vec; |
---|
86 | vec.push_back(1); |
---|
87 | vec.push_back(2); |
---|
88 | vec.push_back(3); |
---|
89 | normalizer::Centralizer<> c; |
---|
90 | c(vec.begin(), vec.end(), vec.begin()); |
---|
91 | for (size_t i=0; i<vec.size(); ++i) |
---|
92 | suite.add(suite.equal(vec[i], static_cast<double>(i)-1.0)); |
---|
93 | |
---|
94 | std::vector<utility::DataWeight> vec2; |
---|
95 | vec2.push_back(utility::DataWeight(1,1)); |
---|
96 | vec2.push_back(utility::DataWeight(2,0.5)); |
---|
97 | vec2.push_back(utility::DataWeight(2,0.5)); |
---|
98 | std::vector<utility::DataWeight> vec3(vec2.size()); |
---|
99 | c(vec2.begin(), vec2.end(), vec3.begin()); |
---|
100 | for (size_t i=0; i<vec2.size(); ++i) |
---|
101 | suite.add(suite.equal(vec3[i].weight(), vec2[i].weight())); |
---|
102 | suite.add(suite.equal(vec3[0].data(), -0.5)); |
---|
103 | suite.add(suite.equal(vec3[1].data(), 0.5)); |
---|
104 | suite.add(suite.equal(vec3[2].data(), 0.5)); |
---|
105 | |
---|
106 | // compile test should not be run |
---|
107 | if (false) { |
---|
108 | |
---|
109 | using boost::detail::dummy_constructor; |
---|
110 | c(boost::forward_iterator_archetype<double>(), |
---|
111 | boost::forward_iterator_archetype<double>(), |
---|
112 | boost::mutable_forward_iterator_archetype<double>()); |
---|
113 | |
---|
114 | c(boost::forward_iterator_archetype<double>(), |
---|
115 | boost::forward_iterator_archetype<double>(), |
---|
116 | boost::mutable_forward_iterator_archetype<utility::DataWeight>()); |
---|
117 | |
---|
118 | c(boost::forward_iterator_archetype<utility::DataWeight>(), |
---|
119 | boost::forward_iterator_archetype<utility::DataWeight>(), |
---|
120 | boost::mutable_forward_iterator_archetype<double>()); |
---|
121 | |
---|
122 | c(boost::forward_iterator_archetype<utility::DataWeight>(), |
---|
123 | boost::forward_iterator_archetype<utility::DataWeight>(), |
---|
124 | boost::mutable_forward_iterator_archetype<utility::DataWeight>()); |
---|
125 | } |
---|
126 | } |
---|
127 | |
---|
128 | |
---|
129 | void test_column_normalize(test::Suite& suite) |
---|
130 | { |
---|
131 | using namespace normalizer; |
---|
132 | suite.err() << "Testing ColumnNormalizer\n"; |
---|
133 | |
---|
134 | utility::Matrix m(2,2); |
---|
135 | m(0,0) = 0; |
---|
136 | m(0,1) = 10; |
---|
137 | m(1,0) = 2; |
---|
138 | m(1,1) = 4; |
---|
139 | ColumnNormalizer<Centralizer<> > qn; |
---|
140 | qn(m, m); |
---|
141 | suite.err() << "Testing m(0,0)\n"; |
---|
142 | suite.add(suite.equal(m(0,0), -1)); |
---|
143 | suite.err() << "Testing m(0,1)\n"; |
---|
144 | suite.add(suite.equal(m(0,1), 3)); |
---|
145 | suite.err() << "Testing m(1,0)\n"; |
---|
146 | suite.add(suite.equal(m(1,0), 1)); |
---|
147 | suite.err() << "Testing m(1,1)\n"; |
---|
148 | suite.add(suite.equal(m(1,1), -3)); |
---|
149 | |
---|
150 | if (false) { // do not run compile tests |
---|
151 | test::container2d_archetype<double> container2d; |
---|
152 | test::mutable_container2d_archetype<double> mutable_container2d; |
---|
153 | qn(container2d, mutable_container2d); |
---|
154 | } |
---|
155 | } |
---|
156 | |
---|
157 | |
---|
158 | void test_qquantile_normalize(test::Suite& suite) |
---|
159 | { |
---|
160 | using namespace normalizer; |
---|
161 | |
---|
162 | suite.err() << "Testing qQuantileNormalizer\n"; |
---|
163 | std::string data(test::filename("data/normalization_test.data")); |
---|
164 | if (utility::FileUtil(data.c_str()).permissions("r")) { |
---|
165 | suite.add(false); |
---|
166 | suite.err() << "Cannot access file " << data << '\n'; |
---|
167 | return; |
---|
168 | } |
---|
169 | std::ifstream data_stream(data.c_str()); |
---|
170 | |
---|
171 | utility::Matrix m(data_stream); |
---|
172 | |
---|
173 | suite.err() << "testing number of parts (Q) boundary conditions\n"; |
---|
174 | qQuantileNormalizer(m.begin_column(0), m.end_column(0), m.rows()); |
---|
175 | qQuantileNormalizer(m.begin_column(0), m.end_column(0), 3); |
---|
176 | |
---|
177 | // first column as target |
---|
178 | qQuantileNormalizer qqn(m.begin_column(0), m.end_column(0) ,9); |
---|
179 | ColumnNormalizer<qQuantileNormalizer> cn(qqn); |
---|
180 | utility::Matrix result(m.rows(),m.columns()); |
---|
181 | cn(m, result); |
---|
182 | |
---|
183 | suite.err() << "test that result can be stored in the source matrix..."; |
---|
184 | cn(m,m); |
---|
185 | if (suite.add(result==m)) |
---|
186 | suite.err() << " ok.\n"; |
---|
187 | else |
---|
188 | suite.err() << " failed.\n"; |
---|
189 | |
---|
190 | // Enough iteration will make all columns to have the same values as |
---|
191 | // the target. |
---|
192 | suite.err() << "Testing that q=matrix rows gives QuantileNormalization\n"; |
---|
193 | utility::Matrix m2(4,2); |
---|
194 | m2(0,0) = 0; m2(0,1) = 10; |
---|
195 | m2(1,0) = 2; m2(1,1) = 4; |
---|
196 | m2(2,0) = 1; m2(2,1) = 0; |
---|
197 | m2(3,0) = 3; m2(3,1) = 7; |
---|
198 | qQuantileNormalizer qqn2(m2.begin_column(0), m2.end_column(0), m2.rows()); |
---|
199 | ColumnNormalizer<qQuantileNormalizer> cn2(qqn2); |
---|
200 | utility::Matrix result2(m2.rows(),m2.columns()); |
---|
201 | cn2(m2,result2); |
---|
202 | suite.add( suite.equal_fix(m2(0,0),result2(2,1),1.0e-12) && |
---|
203 | suite.equal_fix(m2(1,0),result2(3,1),1.0e-12) && |
---|
204 | suite.equal_fix(m2(2,0),result2(1,1),1.0e-12) && |
---|
205 | suite.equal_fix(m2(3,0),result2(0,1),1.0e-12) ); |
---|
206 | // compile test should not be run |
---|
207 | if (false) { |
---|
208 | qQuantileNormalizer qqn3(boost::forward_iterator_archetype<double>(), |
---|
209 | boost::forward_iterator_archetype<double>(), |
---|
210 | 100); |
---|
211 | qqn3(boost::random_access_iterator_archetype<double>(), |
---|
212 | boost::random_access_iterator_archetype<double>(), |
---|
213 | boost::mutable_random_access_iterator_archetype<double>()); |
---|
214 | using utility::DataWeight; |
---|
215 | qQuantileNormalizer qqn4(boost::forward_iterator_archetype<DataWeight>(), |
---|
216 | boost::forward_iterator_archetype<DataWeight>(), |
---|
217 | 100); |
---|
218 | qqn4(boost::random_access_iterator_archetype<DataWeight>(), |
---|
219 | boost::random_access_iterator_archetype<DataWeight>(), |
---|
220 | boost::mutable_random_access_iterator_archetype<DataWeight>()); |
---|
221 | qqn4(boost::random_access_iterator_archetype<DataWeight>(), |
---|
222 | boost::random_access_iterator_archetype<DataWeight>(), |
---|
223 | boost::mutable_random_access_iterator_archetype<double>()); |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | |
---|
228 | void test_qquantile_normalize_weighted(test::Suite& suite) |
---|
229 | { |
---|
230 | using namespace normalizer; |
---|
231 | |
---|
232 | suite.err() << "Testing qQuantileNormalizer weighted\n"; |
---|
233 | |
---|
234 | // test with unweighted target and source |
---|
235 | std::vector<double> target; |
---|
236 | target.reserve(1000); |
---|
237 | while (target.size()<1000) |
---|
238 | target.push_back(target.size()); |
---|
239 | qQuantileNormalizer qQN(target.begin(), target.end(), 4); |
---|
240 | std::vector<double> source; |
---|
241 | while (source.size()<10) |
---|
242 | source.push_back(source.size()*10); |
---|
243 | std::vector<double> result(source.size()); |
---|
244 | |
---|
245 | qQN(source.begin(), source.end(), result.begin()); |
---|
246 | |
---|
247 | using utility::DataWeight; |
---|
248 | suite.err() << "Testing with unweighted target and weighted source\n"; |
---|
249 | std::vector<utility::DataWeight> src_w(source.size(), DataWeight(0, 1)); |
---|
250 | std::copy(source.begin(), source.end(), |
---|
251 | utility::data_iterator(src_w.begin())); |
---|
252 | |
---|
253 | std::vector<utility::DataWeight> result_w(src_w.size()); |
---|
254 | qQN(src_w.begin(), src_w.end(), result_w.begin()); |
---|
255 | suite.add(suite.equal_range(result.begin(), result.end(), |
---|
256 | utility::data_iterator(result_w.begin()))); |
---|
257 | |
---|
258 | suite.err() << "Testing with missing value in source\n"; |
---|
259 | // adding a missing value |
---|
260 | std::vector<utility::DataWeight>::iterator MWi=src_w.begin(); |
---|
261 | MWi+=5; |
---|
262 | src_w.insert(MWi, DataWeight(std::numeric_limits<double>::quiet_NaN(), 0.0)); |
---|
263 | std::vector<utility::DataWeight> result_w2(src_w.size()); |
---|
264 | qQN(src_w.begin(), src_w.end(), result_w2.begin()); |
---|
265 | // excluding missing value from comparison in suite.equal_range |
---|
266 | MWi=result_w2.begin(); |
---|
267 | MWi+=5; |
---|
268 | result_w2.erase(MWi); |
---|
269 | suite.add(suite.equal_range(utility::data_iterator(result_w.begin()), |
---|
270 | utility::data_iterator(result_w.end()), |
---|
271 | utility::data_iterator(result_w2.begin()))); |
---|
272 | |
---|
273 | suite.err() << "testing with weighted target" << std::endl; |
---|
274 | std::vector<utility::DataWeight> target_w(target.size()+1, DataWeight(0, 1)); |
---|
275 | target_w[0] = DataWeight(5.3, 0); |
---|
276 | std::copy(target.begin(), target.end(), |
---|
277 | utility::data_iterator(target_w.begin()+1)); |
---|
278 | qQuantileNormalizer qQNw(target_w.begin(), target_w.end(), 4); |
---|
279 | std::vector<utility::DataWeight> result_w3(src_w.size()); |
---|
280 | qQNw(src_w.begin(), src_w.end(), result_w3.begin()); |
---|
281 | // excluding missing value from comparison in suite.equal_range |
---|
282 | MWi=result_w3.begin(); |
---|
283 | MWi+=5; |
---|
284 | result_w3.erase(MWi); |
---|
285 | suite.add(suite.equal_range(utility::data_iterator(result_w3.begin()), |
---|
286 | utility::data_iterator(result_w3.end()), |
---|
287 | utility::data_iterator(result_w2.begin()))); |
---|
288 | |
---|
289 | } |
---|
290 | |
---|
291 | |
---|
292 | void test_quantile_normalize(test::Suite& suite) |
---|
293 | { |
---|
294 | suite.err() << "Testing QuantileNormalizer\n"; |
---|
295 | utility::Matrix m(2,2); |
---|
296 | m(0,0) = 0; |
---|
297 | m(0,1) = 10; |
---|
298 | m(1,0) = 2; |
---|
299 | m(1,1) = 4; |
---|
300 | normalizer::QuantileNormalizer qn; |
---|
301 | qn(m, m); |
---|
302 | suite.err() << "Testing m(0,0)\n"; |
---|
303 | suite.add(suite.equal(m(0,0), 2)); |
---|
304 | suite.err() << "Testing m(0,1)\n"; |
---|
305 | suite.add(suite.equal(m(0,1), 6)); |
---|
306 | suite.err() << "Testing m(1,0)\n"; |
---|
307 | suite.add(suite.equal(m(1,0), 6)); |
---|
308 | suite.err() << "Testing m(1,1)\n"; |
---|
309 | suite.add(suite.equal(m(1,1), 2)); |
---|
310 | |
---|
311 | // testing with landscape-shaped data matrix |
---|
312 | m.resize(2, 10); |
---|
313 | qn(m, m); |
---|
314 | } |
---|
315 | |
---|
316 | void test_row_normalize(test::Suite& suite) |
---|
317 | { |
---|
318 | using namespace normalizer; |
---|
319 | suite.err() << "Testing RowNormalizer\n"; |
---|
320 | |
---|
321 | utility::Matrix m(2,3); |
---|
322 | m(0,0) = 0; |
---|
323 | m(0,1) = 10; |
---|
324 | m(1,0) = 2; |
---|
325 | m(1,1) = 4; |
---|
326 | utility::Matrix m2(m); |
---|
327 | m2.transpose(); |
---|
328 | ColumnNormalizer<Centralizer<> > cn; |
---|
329 | RowNormalizer<Centralizer<> > rn; |
---|
330 | cn(m, m); |
---|
331 | rn(m2, m2); |
---|
332 | m2.transpose(); |
---|
333 | suite.equal_range(m.begin(), m.end(), m2.begin()); |
---|
334 | if (false) { // do not run compile tests |
---|
335 | test::container2d_archetype<double> container2d; |
---|
336 | test::mutable_container2d_archetype<double> mutable_container2d; |
---|
337 | rn(container2d, mutable_container2d); |
---|
338 | } |
---|
339 | } |
---|
340 | |
---|
341 | void test_spearman(test::Suite& suite) |
---|
342 | { |
---|
343 | suite.err() << "Testing Spearman\n"; |
---|
344 | normalizer::Spearman spearman; |
---|
345 | std::vector<double> vec; |
---|
346 | vec.push_back(0); |
---|
347 | vec.push_back(2); |
---|
348 | vec.push_back(3); |
---|
349 | vec.push_back(1); |
---|
350 | spearman(vec.begin(), vec.end(), vec.begin()); |
---|
351 | std::vector<double> correct; |
---|
352 | correct.push_back(1.0/8); |
---|
353 | correct.push_back(5.0/8); |
---|
354 | correct.push_back(7.0/8); |
---|
355 | correct.push_back(3.0/8); |
---|
356 | suite.add(suite.equal_range(vec.begin(), vec.end(), correct.begin())); |
---|
357 | suite.err() << "Testing Spearman with ties\n"; |
---|
358 | vec[1]=vec[2]; |
---|
359 | correct[1] = correct[2] = (correct[1]+correct[2])/2; |
---|
360 | spearman(vec.begin(), vec.end(), vec.begin()); |
---|
361 | suite.add(suite.equal_range(vec.begin(), vec.end(), correct.begin())); |
---|
362 | test_spearman_weighted(suite); |
---|
363 | } |
---|
364 | |
---|
365 | |
---|
366 | void test_gauss_normalize(test::Suite& suite) |
---|
367 | { |
---|
368 | suite.err() << "Testing Gauss\n"; |
---|
369 | normalizer::Gauss gauss; |
---|
370 | std::vector<double> vec; |
---|
371 | vec.push_back(1); |
---|
372 | gauss(vec.begin(), vec.end(), vec.begin()); |
---|
373 | suite.add(suite.equal(vec.front(), 0)); |
---|
374 | vec.push_back(1); |
---|
375 | gauss(vec.begin(), vec.end(), vec.begin()); |
---|
376 | suite.add(suite.equal(vec.front(), -vec.back())); |
---|
377 | // compile test should not be run |
---|
378 | if (false) { |
---|
379 | using boost::iterator_archetype; |
---|
380 | iterator_archetype<double, |
---|
381 | boost::iterator_archetypes::readable_iterator_t, |
---|
382 | boost::random_access_traversal_tag> |
---|
383 | readable_iterator; |
---|
384 | |
---|
385 | iterator_archetype<double, |
---|
386 | boost::iterator_archetypes::readable_writable_iterator_t, |
---|
387 | boost::random_access_traversal_tag> |
---|
388 | writable_iterator; |
---|
389 | |
---|
390 | // We have to use lvalue here because otherwise proxy classes |
---|
391 | // provided by boost kick in and they do not provide the needed |
---|
392 | // data() and weight() functions that e.g. DataWeightProxy does. |
---|
393 | iterator_archetype<utility::DataWeight, |
---|
394 | boost::iterator_archetypes::readable_lvalue_iterator_t, |
---|
395 | boost::random_access_traversal_tag> |
---|
396 | weighted_readable_iterator; |
---|
397 | |
---|
398 | iterator_archetype<utility::DataWeight, |
---|
399 | boost::iterator_archetypes::writable_lvalue_iterator_t, |
---|
400 | boost::random_access_traversal_tag> |
---|
401 | weighted_writable_iterator; |
---|
402 | |
---|
403 | gauss(readable_iterator, readable_iterator, writable_iterator); |
---|
404 | gauss(readable_iterator, readable_iterator, weighted_writable_iterator); |
---|
405 | gauss(weighted_readable_iterator, weighted_readable_iterator, |
---|
406 | writable_iterator); |
---|
407 | gauss(weighted_readable_iterator, weighted_readable_iterator, |
---|
408 | weighted_writable_iterator); |
---|
409 | } |
---|
410 | } |
---|
411 | |
---|
412 | void test_spearman_weighted(test::Suite& suite) |
---|
413 | { |
---|
414 | suite.err() << "Testing Weighted Spearman\n"; |
---|
415 | normalizer::Spearman spearman; |
---|
416 | |
---|
417 | suite.err() << "Testing that unity weights reproduces unweighted case\n"; |
---|
418 | utility::MatrixWeighted m(1,4,0,1); |
---|
419 | utility::MatrixWeighted res(m.rows(), m.columns(),3.14,0); |
---|
420 | m(0,0).data()=0; |
---|
421 | m(0,1).data()=2; |
---|
422 | m(0,2).data()=3; |
---|
423 | m(0,3).data()=1; |
---|
424 | std::vector<double> correct(m.columns()); |
---|
425 | std::vector<double> correct_w(m.columns(), 1.0); |
---|
426 | std::copy(utility::data_iterator(m.begin_row(0)), |
---|
427 | utility::data_iterator(m.end_row(0)), |
---|
428 | correct.begin()); |
---|
429 | spearman(correct.begin(), correct.end(), correct.begin()); |
---|
430 | spearman(m.begin_row(0), m.end_row(0), res.begin_row(0)); |
---|
431 | |
---|
432 | using utility::data_iterator; |
---|
433 | suite.add(suite.equal_range(data_iterator(res.begin_row(0)), |
---|
434 | data_iterator(res.end_row(0)), |
---|
435 | correct.begin())); |
---|
436 | using utility::weight_iterator; |
---|
437 | suite.add(suite.equal_range(weight_iterator(res.begin_row(0)), |
---|
438 | weight_iterator(res.end_row(0)), |
---|
439 | correct_w.begin())); |
---|
440 | |
---|
441 | suite.err() << "Testing rescaling of weights\n"; |
---|
442 | for (size_t i=0; i<m.columns(); ++i) { |
---|
443 | m(0,i).weight() *= 2; |
---|
444 | correct_w[i] *= 2; |
---|
445 | } |
---|
446 | spearman(m.begin_row(0), m.end_row(0), res.begin_row(0)); |
---|
447 | suite.add(suite.equal_range(data_iterator(res.begin_row(0)), |
---|
448 | data_iterator(res.end_row(0)), |
---|
449 | correct.begin())); |
---|
450 | suite.add(suite.equal_range(weight_iterator(res.begin_row(0)), |
---|
451 | weight_iterator(res.end_row(0)), |
---|
452 | correct_w.begin())); |
---|
453 | |
---|
454 | |
---|
455 | suite.err() << "Testing case with a zero weight\n"; |
---|
456 | m(0,1).data() = std::numeric_limits<double>::quiet_NaN(); |
---|
457 | m(0,1).weight() = 0.0; |
---|
458 | spearman(m.begin_row(0), m.end_row(0), res.begin_row(0)); |
---|
459 | suite.add(suite.equal(res(0,0).data(), 0.5/3)); |
---|
460 | suite.add(suite.equal(res(0,2).data(), 2.5/3)); |
---|
461 | suite.add(suite.equal(res(0,3).data(), 1.5/3)); |
---|
462 | |
---|
463 | suite.err() << "Testing case with ties\n"; |
---|
464 | m(0,0).data() = m(0,2).data(); |
---|
465 | spearman(m.begin_row(0), m.end_row(0), res.begin_row(0)); |
---|
466 | suite.add(suite.equal(res(0,0).data(), 2.0/3)); |
---|
467 | suite.add(suite.equal(res(0,2).data(), 2.0/3)); |
---|
468 | suite.add(suite.equal(res(0,3).data(), 0.5/3)); |
---|
469 | // compile test should not be run |
---|
470 | if (false) { |
---|
471 | using boost::iterator_archetype; |
---|
472 | iterator_archetype<double, |
---|
473 | boost::iterator_archetypes::readable_iterator_t, |
---|
474 | boost::random_access_traversal_tag> |
---|
475 | readable_iterator; |
---|
476 | |
---|
477 | iterator_archetype<double, |
---|
478 | boost::iterator_archetypes::readable_writable_iterator_t, |
---|
479 | boost::random_access_traversal_tag> |
---|
480 | writable_iterator; |
---|
481 | |
---|
482 | // We have to use lvalue here because otherwise proxy classes |
---|
483 | // provided by boost kick in and they do not provide the needed |
---|
484 | // data() and weight() functions that e.g. DataWeightProxy does. |
---|
485 | iterator_archetype<utility::DataWeight, |
---|
486 | boost::iterator_archetypes::readable_lvalue_iterator_t, |
---|
487 | boost::random_access_traversal_tag> |
---|
488 | weighted_readable_iterator; |
---|
489 | |
---|
490 | iterator_archetype<utility::DataWeight, |
---|
491 | boost::iterator_archetypes::writable_lvalue_iterator_t, |
---|
492 | boost::random_access_traversal_tag> |
---|
493 | weighted_writable_iterator; |
---|
494 | |
---|
495 | spearman(readable_iterator, readable_iterator, writable_iterator); |
---|
496 | spearman(readable_iterator, readable_iterator, weighted_writable_iterator); |
---|
497 | spearman(weighted_readable_iterator, weighted_readable_iterator, |
---|
498 | writable_iterator); |
---|
499 | spearman(weighted_readable_iterator, weighted_readable_iterator, |
---|
500 | weighted_writable_iterator); |
---|
501 | } |
---|
502 | |
---|
503 | } |
---|
504 | |
---|
505 | void test_z_score(test::Suite& suite) |
---|
506 | { |
---|
507 | suite.err() << "Testing Zscore\n"; |
---|
508 | std::vector<double> vec; |
---|
509 | vec.push_back(0); |
---|
510 | vec.push_back(3.14); |
---|
511 | normalizer::Zscore zscore; |
---|
512 | zscore(vec.begin(), vec.end(), vec.begin()); |
---|
513 | for (size_t i=0; i<vec.size(); ++i) |
---|
514 | suite.add(suite.equal(vec[i], 2.0*i-1.0)); |
---|
515 | |
---|
516 | std::vector<utility::DataWeight> vec2; |
---|
517 | vec2.push_back(utility::DataWeight(1,1)); |
---|
518 | vec2.push_back(utility::DataWeight(2.13,0.5)); |
---|
519 | vec2.push_back(utility::DataWeight(2.13,0.5)); |
---|
520 | std::vector<utility::DataWeight> vec3(vec2.size()); |
---|
521 | zscore(vec2.begin(), vec2.end(), vec3.begin()); |
---|
522 | for (size_t i=0; i<vec2.size(); ++i) |
---|
523 | suite.add(suite.equal(vec3[i].weight(), vec2[i].weight())); |
---|
524 | suite.add(suite.equal(vec3[0].data(), -1.0)); |
---|
525 | suite.add(suite.equal(vec3[1].data(), 1.0)); |
---|
526 | suite.add(suite.equal(vec3[2].data(), 1.0)); |
---|
527 | // compile test should not be run |
---|
528 | if (false) { |
---|
529 | boost::detail::dummy_constructor dummy_cons; |
---|
530 | zscore(boost::forward_iterator_archetype<double>(), |
---|
531 | boost::forward_iterator_archetype<double>(), |
---|
532 | boost::output_iterator_archetype<double>(dummy_cons)); |
---|
533 | using utility::DataWeight; |
---|
534 | zscore(boost::forward_iterator_archetype<DataWeight>(), |
---|
535 | boost::forward_iterator_archetype<DataWeight>(), |
---|
536 | boost::mutable_forward_iterator_archetype<DataWeight>()); |
---|
537 | zscore(boost::random_access_iterator_archetype<DataWeight>(), |
---|
538 | boost::random_access_iterator_archetype<DataWeight>(), |
---|
539 | boost::mutable_random_access_iterator_archetype<double>()); |
---|
540 | zscore(boost::random_access_iterator_archetype<double>(), |
---|
541 | boost::random_access_iterator_archetype<double>(), |
---|
542 | boost::mutable_random_access_iterator_archetype<DataWeight>()); |
---|
543 | } |
---|
544 | } |
---|