1 | // $Id: regression_test.cc 726 2007-01-04 14:38:56Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/regression/KernelBox.h" |
---|
25 | #include "yat/regression/Linear.h" |
---|
26 | #include "yat/regression/LinearWeighted.h" |
---|
27 | #include "yat/regression/Local.h" |
---|
28 | #include "yat/regression/Naive.h" |
---|
29 | #include "yat/regression/NaiveWeighted.h" |
---|
30 | #include "yat/regression/Polynomial.h" |
---|
31 | #include "yat/regression/PolynomialWeighted.h" |
---|
32 | #include "yat/utility/matrix.h" |
---|
33 | #include "yat/utility/vector.h" |
---|
34 | |
---|
35 | #include <cmath> |
---|
36 | |
---|
37 | #include <fstream> |
---|
38 | #include <iostream> |
---|
39 | |
---|
40 | |
---|
41 | using namespace theplu::yat; |
---|
42 | |
---|
43 | bool Local_test(regression::OneDimensionalWeighted&, |
---|
44 | regression::Kernel&); |
---|
45 | |
---|
46 | |
---|
47 | int main(const int argc,const char* argv[]) |
---|
48 | { |
---|
49 | std::ostream* error; |
---|
50 | if (argc>1 && argv[1]==std::string("-v")) |
---|
51 | error = &std::cerr; |
---|
52 | else { |
---|
53 | error = new std::ofstream("/dev/null"); |
---|
54 | if (argc>1) |
---|
55 | std::cout << "regression_test -v : for printing extra information\n"; |
---|
56 | } |
---|
57 | *error << "testing regression" << std::endl; |
---|
58 | bool ok = true; |
---|
59 | |
---|
60 | // test data for Linear and Naive (Weighted and non-weighted) |
---|
61 | utility::vector x(4); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; |
---|
62 | utility::vector y(4); y(0)=12; y(1)=11; y(2)=14; y(3)=13; |
---|
63 | utility::vector w(4); w(0)=0.1; w(1)=0.2; w(2)=0.3; w(3)=0.4; |
---|
64 | |
---|
65 | // Comparing linear and polynomial(1) |
---|
66 | regression::Linear linear; |
---|
67 | linear.fit(x,y); |
---|
68 | regression::Polynomial polynomial(1); |
---|
69 | polynomial.fit(x,y); |
---|
70 | if ( fabs(linear.beta()-polynomial.fit_parameters()(1))>0.0001 ){ |
---|
71 | *error << "error: beta and fit_parameters(1) not equal" << std::endl; |
---|
72 | *error << " beta = " << linear.beta() << std::endl; |
---|
73 | *error << " fit_parameters(1) = " |
---|
74 | << polynomial.fit_parameters()(1) << std::endl; |
---|
75 | ok = false; |
---|
76 | } |
---|
77 | if ( fabs(polynomial.fit_parameters()(0)-linear.alpha()+ |
---|
78 | linear.beta()*1985)>0.0001){ |
---|
79 | *error << "error: fit_parameters(0) = " |
---|
80 | << polynomial.fit_parameters()(0)<< std::endl; |
---|
81 | *error << "error: alpha-beta*m_x = " |
---|
82 | << linear.alpha()-linear.beta()*1985 << std::endl; |
---|
83 | ok = false; |
---|
84 | } |
---|
85 | if ( fabs(polynomial.chisq()-linear.chisq())>0.0001){ |
---|
86 | *error << "error: chisq not same in linear and polynomial(1)" |
---|
87 | << std::endl; |
---|
88 | ok = false; |
---|
89 | } |
---|
90 | if ( fabs(polynomial.predict(1.0)-linear.predict(1.0))>0.0001){ |
---|
91 | *error << "error: predict not same in linear and polynomial(1)" |
---|
92 | << std::endl; |
---|
93 | ok = false; |
---|
94 | } |
---|
95 | if ( fabs(polynomial.standard_error(1985)-linear.standard_error(1985)) |
---|
96 | >0.0001){ |
---|
97 | *error << "error: standard_error not same in linear and polynomial(1)" |
---|
98 | << "\n polynomial: " << polynomial.standard_error(1.0) |
---|
99 | << "\n linear: " << linear.standard_error(1.0) |
---|
100 | << "\n alpha_var: " << linear.alpha_var() |
---|
101 | << "\n beta_var: " << linear.beta_var() |
---|
102 | << "\n covariance: " << polynomial.covariance()(0,0) |
---|
103 | << " " << polynomial.covariance()(0,1) << "\n" |
---|
104 | << " " << polynomial.covariance()(1,0) |
---|
105 | << " " << polynomial.covariance()(1,1) |
---|
106 | << std::endl; |
---|
107 | ok = false; |
---|
108 | } |
---|
109 | |
---|
110 | *error << "testing regression::LinearWeighted" << std::endl; |
---|
111 | regression::LinearWeighted linear_w; |
---|
112 | linear_w.fit(x,y,w); |
---|
113 | double y_predicted = linear_w.predict(1990); |
---|
114 | double y_predicted_err = linear_w.prediction_error(1990); |
---|
115 | if (fabs(y_predicted-12.8)>0.001){ |
---|
116 | *error << "error: cannot reproduce fit." << std::endl; |
---|
117 | *error << "predicted value: " << y_predicted << " expected 12.8" |
---|
118 | << std::endl; |
---|
119 | ok=false; |
---|
120 | } |
---|
121 | |
---|
122 | // testing regression::NaiveWeighted |
---|
123 | *error << "testing regression::NaiveWeighted" << std::endl; |
---|
124 | regression::NaiveWeighted naive_w; |
---|
125 | naive_w.fit(x,y,w); |
---|
126 | |
---|
127 | y_predicted=naive_w.predict(0.0); |
---|
128 | y_predicted_err=naive_w.prediction_error(0.0); |
---|
129 | if (y_predicted!=(0.1*12+0.2*11+0.3*14+0.4*13)) { |
---|
130 | *error << "regression_NaiveWeighted: cannot reproduce fit." << std::endl; |
---|
131 | *error << "returned value: " << y_predicted << std::endl; |
---|
132 | *error << "expected: " << 0.1*12+0.2*11+0.3*14+0.4*13 << std::endl; |
---|
133 | ok=false; |
---|
134 | } |
---|
135 | |
---|
136 | // testing regression::Local |
---|
137 | *error << "testing regression::Local" << std::endl; |
---|
138 | regression::KernelBox kb; |
---|
139 | regression::LinearWeighted rl; |
---|
140 | if (!Local_test(rl,kb)) { |
---|
141 | *error << "regression_Local: Linear cannot reproduce fit." << std::endl; |
---|
142 | ok=false; |
---|
143 | } |
---|
144 | regression::NaiveWeighted rn; |
---|
145 | if (!Local_test(rn,kb)) { |
---|
146 | *error << "regression_Local: Naive cannot reproduce fit." << std::endl; |
---|
147 | ok=false; |
---|
148 | } |
---|
149 | |
---|
150 | // testing regression::Polynomial |
---|
151 | *error << "testing regression::Polynomial" << std::endl; |
---|
152 | { |
---|
153 | std::ifstream s("data/regression_gauss.data"); |
---|
154 | utility::matrix data(s); |
---|
155 | utility::vector x(data.rows()); |
---|
156 | utility::vector ln_y(data.rows()); |
---|
157 | for (size_t i=0; i<data.rows(); ++i) { |
---|
158 | x(i)=data(i,0); |
---|
159 | ln_y(i)=log(data(i,1)); |
---|
160 | } |
---|
161 | |
---|
162 | regression::Polynomial polynomialfit(2); |
---|
163 | polynomialfit.fit(x,ln_y); |
---|
164 | utility::vector fit=polynomialfit.fit_parameters(); |
---|
165 | if (fabs(fit[0]-1.012229646706 + fit[1]-0.012561322528 + |
---|
166 | fit[2]+1.159674470130)>1e-11) { // Jari, fix number! |
---|
167 | *error << "regression_Polynomial: cannot reproduce fit." << std::endl; |
---|
168 | ok=false; |
---|
169 | } |
---|
170 | } |
---|
171 | |
---|
172 | *error << "testing regression::Linear" << std::endl; |
---|
173 | regression::Linear lin; |
---|
174 | |
---|
175 | *error << "testing regression::Naive" << std::endl; |
---|
176 | regression::Naive naive; |
---|
177 | |
---|
178 | *error << "testing regression::Polynomial" << std::endl; |
---|
179 | regression::Polynomial pol(2); |
---|
180 | |
---|
181 | *error << "testing regression::PolynomialWeighted" << std::endl; |
---|
182 | regression::PolynomialWeighted pol_weighted(2); |
---|
183 | |
---|
184 | if (error!=&std::cerr) |
---|
185 | delete error; |
---|
186 | |
---|
187 | return (ok ? 0 : -1); |
---|
188 | } |
---|
189 | |
---|
190 | |
---|
191 | |
---|
192 | bool Local_test(regression::OneDimensionalWeighted& r, |
---|
193 | regression::Kernel& k) |
---|
194 | { |
---|
195 | regression::Local rl(r,k); |
---|
196 | for (size_t i=0; i<1000; i++){ |
---|
197 | rl.add(i, 10); |
---|
198 | } |
---|
199 | |
---|
200 | rl.fit(10, 100); |
---|
201 | |
---|
202 | utility::vector y = rl.y_predicted(); |
---|
203 | for (size_t i=0; i<y.size(); i++) |
---|
204 | if (y(i)!=10.0){ |
---|
205 | return false; |
---|
206 | } |
---|
207 | return true; |
---|
208 | } |
---|