1 | // $Id: regression_test.cc 730 2007-01-06 11:02:21Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/regression/KernelBox.h" |
---|
25 | #include "yat/regression/Linear.h" |
---|
26 | #include "yat/regression/LinearWeighted.h" |
---|
27 | #include "yat/regression/Local.h" |
---|
28 | #include "yat/regression/Naive.h" |
---|
29 | #include "yat/regression/NaiveWeighted.h" |
---|
30 | #include "yat/regression/Polynomial.h" |
---|
31 | #include "yat/regression/PolynomialWeighted.h" |
---|
32 | #include "yat/utility/matrix.h" |
---|
33 | #include "yat/utility/vector.h" |
---|
34 | |
---|
35 | #include <cmath> |
---|
36 | |
---|
37 | #include <fstream> |
---|
38 | #include <iostream> |
---|
39 | |
---|
40 | |
---|
41 | using namespace theplu::yat; |
---|
42 | |
---|
43 | bool equal(regression::OneDimensional&, regression::OneDimensionalWeighted&, |
---|
44 | std::ostream*); |
---|
45 | |
---|
46 | bool unity_weights(regression::OneDimensional&, |
---|
47 | regression::OneDimensionalWeighted&, |
---|
48 | const utility::vector&, const utility::vector&, |
---|
49 | std::ostream*); |
---|
50 | |
---|
51 | bool rescale_weights(regression::OneDimensionalWeighted&, |
---|
52 | const utility::vector&, const utility::vector&, |
---|
53 | std::ostream*); |
---|
54 | |
---|
55 | bool zero_weights(regression::OneDimensionalWeighted&, |
---|
56 | const utility::vector&, const utility::vector&, |
---|
57 | std::ostream*); |
---|
58 | |
---|
59 | |
---|
60 | bool Local_test(regression::OneDimensionalWeighted&, |
---|
61 | regression::Kernel&); |
---|
62 | |
---|
63 | int main(const int argc,const char* argv[]) |
---|
64 | { |
---|
65 | std::ostream* error; |
---|
66 | if (argc>1 && argv[1]==std::string("-v")) |
---|
67 | error = &std::cerr; |
---|
68 | else { |
---|
69 | error = new std::ofstream("/dev/null"); |
---|
70 | if (argc>1) |
---|
71 | std::cout << "regression_test -v : for printing extra information\n"; |
---|
72 | } |
---|
73 | *error << " testing regression" << std::endl; |
---|
74 | bool ok = true; |
---|
75 | |
---|
76 | // test data for Linear and Naive (Weighted and non-weighted) |
---|
77 | utility::vector x(4); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; |
---|
78 | utility::vector y(4); y(0)=12; y(1)=11; y(2)=14; y(3)=13; |
---|
79 | utility::vector w(4); w(0)=0.1; w(1)=0.2; w(2)=0.3; w(3)=0.4; |
---|
80 | |
---|
81 | // Comparing linear and polynomial(1) |
---|
82 | regression::Linear linear; |
---|
83 | linear.fit(x,y); |
---|
84 | regression::Polynomial polynomial(1); |
---|
85 | polynomial.fit(x,y); |
---|
86 | if ( fabs(linear.beta()-polynomial.fit_parameters()(1))>0.0001 ){ |
---|
87 | *error << "error: beta and fit_parameters(1) not equal" << std::endl; |
---|
88 | *error << " beta = " << linear.beta() << std::endl; |
---|
89 | *error << " fit_parameters(1) = " |
---|
90 | << polynomial.fit_parameters()(1) << std::endl; |
---|
91 | ok = false; |
---|
92 | } |
---|
93 | if ( fabs(polynomial.fit_parameters()(0)-linear.alpha()+ |
---|
94 | linear.beta()*1985)>0.0001){ |
---|
95 | *error << "error: fit_parameters(0) = " |
---|
96 | << polynomial.fit_parameters()(0)<< std::endl; |
---|
97 | *error << "error: alpha-beta*m_x = " |
---|
98 | << linear.alpha()-linear.beta()*1985 << std::endl; |
---|
99 | ok = false; |
---|
100 | } |
---|
101 | if ( fabs(polynomial.chisq()-linear.chisq())>0.0001){ |
---|
102 | *error << "error: chisq not same in linear and polynomial(1)" |
---|
103 | << std::endl; |
---|
104 | ok = false; |
---|
105 | } |
---|
106 | if ( fabs(polynomial.predict(1.0)-linear.predict(1.0))>0.0001){ |
---|
107 | *error << "error: predict not same in linear and polynomial(1)" |
---|
108 | << std::endl; |
---|
109 | ok = false; |
---|
110 | } |
---|
111 | if ( fabs(polynomial.standard_error2(1985)-linear.standard_error2(1985)) |
---|
112 | >0.0001){ |
---|
113 | *error << "error: standard_error not same in linear and polynomial(1)" |
---|
114 | << "\n polynomial: " << polynomial.standard_error2(1985) |
---|
115 | << "\n linear: " << linear.standard_error2(1985) |
---|
116 | << std::endl; |
---|
117 | ok = false; |
---|
118 | } |
---|
119 | |
---|
120 | *error << " testing regression::LinearWeighted" << std::endl; |
---|
121 | regression::LinearWeighted linear_w; |
---|
122 | ok = equal(linear, linear_w, error) && ok; |
---|
123 | linear_w.fit(x,y,w); |
---|
124 | double y_predicted = linear_w.predict(1990); |
---|
125 | double y_predicted_err = linear_w.prediction_error2(1990); |
---|
126 | if (fabs(y_predicted-12.8)>0.001){ |
---|
127 | *error << "error: cannot reproduce fit." << std::endl; |
---|
128 | *error << "predicted value: " << y_predicted << " expected 12.8" |
---|
129 | << std::endl; |
---|
130 | ok=false; |
---|
131 | } |
---|
132 | |
---|
133 | // testing regression::NaiveWeighted |
---|
134 | *error << " testing regression::NaiveWeighted" << std::endl; |
---|
135 | regression::NaiveWeighted naive_w; |
---|
136 | regression::Naive naive; |
---|
137 | ok = equal(naive, naive_w, error) && ok; |
---|
138 | naive_w.fit(x,y,w); |
---|
139 | |
---|
140 | y_predicted=naive_w.predict(0.0); |
---|
141 | y_predicted_err=naive_w.prediction_error2(0.0); |
---|
142 | if (y_predicted!=(0.1*12+0.2*11+0.3*14+0.4*13)) { |
---|
143 | *error << "regression_NaiveWeighted: cannot reproduce fit." << std::endl; |
---|
144 | *error << "returned value: " << y_predicted << std::endl; |
---|
145 | *error << "expected: " << 0.1*12+0.2*11+0.3*14+0.4*13 << std::endl; |
---|
146 | ok=false; |
---|
147 | } |
---|
148 | |
---|
149 | // testing regression::Local |
---|
150 | *error << " testing regression::Local" << std::endl; |
---|
151 | regression::KernelBox kb; |
---|
152 | regression::LinearWeighted rl; |
---|
153 | if (!Local_test(rl,kb)) { |
---|
154 | *error << "regression_Local: Linear cannot reproduce fit." << std::endl; |
---|
155 | ok=false; |
---|
156 | } |
---|
157 | regression::NaiveWeighted rn; |
---|
158 | if (!Local_test(rn,kb)) { |
---|
159 | *error << "regression_Local: Naive cannot reproduce fit." << std::endl; |
---|
160 | ok=false; |
---|
161 | } |
---|
162 | |
---|
163 | // testing regression::Polynomial |
---|
164 | *error << " testing regression::Polynomial" << std::endl; |
---|
165 | { |
---|
166 | std::ifstream s("data/regression_gauss.data"); |
---|
167 | utility::matrix data(s); |
---|
168 | utility::vector x(data.rows()); |
---|
169 | utility::vector ln_y(data.rows()); |
---|
170 | for (size_t i=0; i<data.rows(); ++i) { |
---|
171 | x(i)=data(i,0); |
---|
172 | ln_y(i)=log(data(i,1)); |
---|
173 | } |
---|
174 | |
---|
175 | regression::Polynomial polynomialfit(2); |
---|
176 | polynomialfit.fit(x,ln_y); |
---|
177 | utility::vector fit=polynomialfit.fit_parameters(); |
---|
178 | if (fabs(fit[0]-1.012229646706 + fit[1]-0.012561322528 + |
---|
179 | fit[2]+1.159674470130)>1e-11) { // Jari, fix number! |
---|
180 | *error << "regression_Polynomial: cannot reproduce fit." << std::endl; |
---|
181 | ok=false; |
---|
182 | } |
---|
183 | } |
---|
184 | |
---|
185 | *error << " testing regression::PolynomialWeighted" << std::endl; |
---|
186 | regression::PolynomialWeighted pol_weighted(2); |
---|
187 | |
---|
188 | if (error!=&std::cerr) |
---|
189 | delete error; |
---|
190 | |
---|
191 | return (ok ? 0 : -1); |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | bool equal(regression::OneDimensional& r, |
---|
196 | regression::OneDimensionalWeighted& wr, |
---|
197 | std::ostream* error) |
---|
198 | { |
---|
199 | bool ok=true; |
---|
200 | utility::vector x(5); x(0)=1970; x(1)=1980; x(2)=1990; x(3)=2000; x(4)=2010; |
---|
201 | utility::vector y(5); y(0)=12; y(1)=11; y(2)=14; y(3)=13; y(4)=15; |
---|
202 | |
---|
203 | ok = unity_weights(r, wr, x, y, error) && ok; |
---|
204 | ok = rescale_weights(wr, x, y, error) && ok; |
---|
205 | ok = zero_weights(wr, x, y, error) && ok; |
---|
206 | return ok; |
---|
207 | } |
---|
208 | |
---|
209 | |
---|
210 | bool unity_weights(regression::OneDimensional& r, |
---|
211 | regression::OneDimensionalWeighted& rw, |
---|
212 | const utility::vector& x, const utility::vector& y, |
---|
213 | std::ostream* error) |
---|
214 | { |
---|
215 | *error << " testing unity weights equal to non-weighted version.\n"; |
---|
216 | bool ok=true; |
---|
217 | utility::vector w(x.size(), 1.0); |
---|
218 | r.fit(x,y); |
---|
219 | rw.fit(x,y,w); |
---|
220 | if (r.predict(2000) != rw.predict(2000)){ |
---|
221 | ok = false; |
---|
222 | *error << "Error: predict not equal" << std::endl; |
---|
223 | } |
---|
224 | if (fabs(r.prediction_error2(2000)-rw.prediction_error2(2000))>10e-7){ |
---|
225 | ok = false; |
---|
226 | *error << "Error: prediction_error2 not equal non-weighted version.\n" |
---|
227 | << " weighted: " << rw.prediction_error2(2000) << "\n" |
---|
228 | << " non-weighted: " << r.prediction_error2(2000) |
---|
229 | << std::endl; |
---|
230 | } |
---|
231 | if (fabs(r.s2()-rw.s2())>10E-7){ |
---|
232 | ok = false; |
---|
233 | *error << "Error: r2 not equal non-weighted version." << std::endl; |
---|
234 | *error << "weighted r2 = " << rw.r2() << std::endl; |
---|
235 | *error << "non-weighted r2 = " << r.r2() << std::endl; |
---|
236 | } |
---|
237 | if (fabs(r.s2()-rw.s2())>10E-7){ |
---|
238 | ok = false; |
---|
239 | *error << "Error: s2 not equal non-weighted version." << std::endl; |
---|
240 | *error << "weighted s2 = " << rw.s2() << std::endl; |
---|
241 | *error << "non-weighted s2 = " << r.s2() << std::endl; |
---|
242 | } |
---|
243 | if (fabs(r.standard_error2(2000)-rw.standard_error2(2000))>10e-7){ |
---|
244 | ok = false; |
---|
245 | *error << "Error: standard_error not equal non-weighted version." |
---|
246 | << std::endl; |
---|
247 | } |
---|
248 | return ok; |
---|
249 | } |
---|
250 | |
---|
251 | |
---|
252 | bool rescale_weights(regression::OneDimensionalWeighted& wr, |
---|
253 | const utility::vector& x, const utility::vector& y, |
---|
254 | std::ostream* error) |
---|
255 | { |
---|
256 | *error << " testing rescaling weights.\n"; |
---|
257 | bool ok = true; |
---|
258 | utility::vector w(5); w(0)=1.0; w(1)=1.0; w(2)=0.5; w(3)=0.2; w(4)=0.2; |
---|
259 | wr.fit(x,y,w); |
---|
260 | double predict = wr.predict(2000); |
---|
261 | double prediction_error2 = wr.prediction_error2(2000); |
---|
262 | double r2 = wr.r2(); |
---|
263 | double s2 = wr.s2(); |
---|
264 | double standard_error2 = wr.standard_error2(2000); |
---|
265 | |
---|
266 | w.scale(2); |
---|
267 | wr.fit(x,y,w); |
---|
268 | if (wr.predict(2000) != predict){ |
---|
269 | ok = false; |
---|
270 | *error << "Error: predict not equal after rescaling.\n"; |
---|
271 | } |
---|
272 | if (wr.prediction_error2(2000,2) != prediction_error2){ |
---|
273 | ok = false; |
---|
274 | *error << "Error: prediction_error2 not equal after rescaling.\n"; |
---|
275 | } |
---|
276 | if (wr.r2() != r2){ |
---|
277 | ok = false; |
---|
278 | *error << "Error: r2 not equal after rescaling.\n"; |
---|
279 | } |
---|
280 | if (wr.s2(2) != s2){ |
---|
281 | ok = false; |
---|
282 | *error << "Error: s2 not equal after rescaling.\n"; |
---|
283 | *error << " s2 = " << s2 << " and after doubling weights.\n"; |
---|
284 | *error << " s2 = " << wr.s2(2) << "\n"; |
---|
285 | } |
---|
286 | if (wr.standard_error2(2000) != standard_error2){ |
---|
287 | ok = false; |
---|
288 | *error << "Error: standard_error2 not equal after rescaling.\n"; |
---|
289 | } |
---|
290 | return ok; |
---|
291 | } |
---|
292 | |
---|
293 | |
---|
294 | bool zero_weights(regression::OneDimensionalWeighted& wr, |
---|
295 | const utility::vector& x, const utility::vector& y, |
---|
296 | std::ostream* error) |
---|
297 | { |
---|
298 | *error << " testing zero weights equal to missing value.\n"; |
---|
299 | bool ok = true; |
---|
300 | utility::vector w(5); w(0)=1.0; w(1)=1.0; w(2)=0.5; w(3)=0.2; w(4)=0; |
---|
301 | wr.fit(x,y,w); |
---|
302 | double predict = wr.predict(2000); |
---|
303 | double prediction_error2 = wr.prediction_error2(2000); |
---|
304 | double r2 = wr.r2(); |
---|
305 | double s2 = wr.s2(); |
---|
306 | double standard_error2 = wr.standard_error2(2000); |
---|
307 | |
---|
308 | utility::vector x2(4); |
---|
309 | utility::vector y2(4); |
---|
310 | utility::vector w2(4); |
---|
311 | for (size_t i=0; i<4; ++i){ |
---|
312 | x2(i) = x(i); |
---|
313 | y2(i) = y(i); |
---|
314 | w2(i) = w(i); |
---|
315 | } |
---|
316 | |
---|
317 | wr.fit(x2,y2,w2); |
---|
318 | if (wr.predict(2000) != predict){ |
---|
319 | ok = false; |
---|
320 | *error << "Error: predict not equal.\n"; |
---|
321 | } |
---|
322 | if (wr.prediction_error2(2000) != prediction_error2){ |
---|
323 | ok = false; |
---|
324 | *error << "Error: prediction_error2 not equal.\n"; |
---|
325 | } |
---|
326 | if (wr.r2() != r2){ |
---|
327 | ok = false; |
---|
328 | *error << "Error: r2 not equal.\n"; |
---|
329 | } |
---|
330 | if (wr.s2() != s2){ |
---|
331 | ok = false; |
---|
332 | *error << "Error: s2 not equal.\n"; |
---|
333 | } |
---|
334 | if (wr.standard_error2(2000) != standard_error2){ |
---|
335 | ok = false; |
---|
336 | *error << "Error: standard_error2 not equal.\n"; |
---|
337 | } |
---|
338 | return ok; |
---|
339 | } |
---|
340 | |
---|
341 | |
---|
342 | bool Local_test(regression::OneDimensionalWeighted& r, |
---|
343 | regression::Kernel& k) |
---|
344 | { |
---|
345 | regression::Local rl(r,k); |
---|
346 | for (size_t i=0; i<1000; i++){ |
---|
347 | rl.add(i, 10); |
---|
348 | } |
---|
349 | |
---|
350 | rl.fit(10, 100); |
---|
351 | |
---|
352 | utility::vector y = rl.y_predicted(); |
---|
353 | for (size_t i=0; i<y.size(); i++) |
---|
354 | if (y(i)!=10.0){ |
---|
355 | return false; |
---|
356 | } |
---|
357 | return true; |
---|
358 | } |
---|