1 | // $Id: subset_generator_test.cc 865 2007-09-10 19:41:04Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2006 Jari Häkkinen, Markus Ringnér, Peter Johansson |
---|
5 | Copyright (C) 2007 Peter Johansson |
---|
6 | |
---|
7 | This file is part of the yat library, http://trac.thep.lu.se/trac/yat |
---|
8 | |
---|
9 | The yat library is free software; you can redistribute it and/or |
---|
10 | modify it under the terms of the GNU General Public License as |
---|
11 | published by the Free Software Foundation; either version 2 of the |
---|
12 | License, or (at your option) any later version. |
---|
13 | |
---|
14 | The yat library is distributed in the hope that it will be useful, |
---|
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License |
---|
20 | along with this program; if not, write to the Free Software |
---|
21 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
22 | 02111-1307, USA. |
---|
23 | */ |
---|
24 | |
---|
25 | #include "yat/classifier/BootstrapSampler.h" |
---|
26 | #include "yat/classifier/CrossValidationSampler.h" |
---|
27 | #include "yat/classifier/FeatureSelectorIR.h" |
---|
28 | #include "yat/classifier/Kernel_SEV.h" |
---|
29 | #include "yat/classifier/KernelLookup.h" |
---|
30 | #include "yat/classifier/MatrixLookup.h" |
---|
31 | #include "yat/classifier/PolynomialKernelFunction.h" |
---|
32 | #include "yat/classifier/SubsetGenerator.h" |
---|
33 | #include "yat/classifier/SVM.h" |
---|
34 | #include "yat/classifier/NCC.h" |
---|
35 | #include "yat/statistics/AUC.h" |
---|
36 | #include "yat/statistics/PearsonDistance.h" |
---|
37 | #include "yat/utility/matrix.h" |
---|
38 | |
---|
39 | #include <cassert> |
---|
40 | #include <fstream> |
---|
41 | #include <iostream> |
---|
42 | #include <string> |
---|
43 | |
---|
44 | using namespace theplu::yat; |
---|
45 | |
---|
46 | bool class_count_test(const std::vector<size_t>&, std::ostream*); |
---|
47 | bool sample_count_test(const std::vector<size_t>&, std::ostream*); |
---|
48 | bool test_nested(std::ostream* error); |
---|
49 | bool test_cv(std::ostream*); |
---|
50 | bool test_creation(std::ostream* error); |
---|
51 | bool test_bootstrap(std::ostream* error); |
---|
52 | |
---|
53 | |
---|
54 | int main(const int argc,const char* argv[]) |
---|
55 | { |
---|
56 | std::ostream* error; |
---|
57 | if (argc>1 && argv[1]==std::string("-v")) |
---|
58 | error = &std::cerr; |
---|
59 | else { |
---|
60 | error = new std::ofstream("/dev/null"); |
---|
61 | if (argc>1) |
---|
62 | std::cout << "subset_generator -v : for printing extra information\n"; |
---|
63 | } |
---|
64 | *error << "testing subset_generator" << std::endl; |
---|
65 | bool ok = true; |
---|
66 | |
---|
67 | ok = ok && test_creation(error); |
---|
68 | ok = ok && test_nested(error); |
---|
69 | ok = ok && test_cv(error); |
---|
70 | |
---|
71 | if (ok) |
---|
72 | return 0; |
---|
73 | return -1; |
---|
74 | } |
---|
75 | |
---|
76 | |
---|
77 | bool test_creation(std::ostream* error) |
---|
78 | { |
---|
79 | bool ok=true; |
---|
80 | std::ifstream is("data/nm_target_bin.txt"); |
---|
81 | *error << "loading target " << std::endl; |
---|
82 | classifier::Target target(is); |
---|
83 | is.close(); |
---|
84 | *error << "number of targets: " << target.size() << std::endl; |
---|
85 | *error << "number of classes: " << target.nof_classes() << std::endl; |
---|
86 | is.open("data/nm_data_centralized.txt"); |
---|
87 | *error << "loading data " << std::endl; |
---|
88 | utility::matrix m(is); |
---|
89 | is.close(); |
---|
90 | classifier::MatrixLookup data(m); |
---|
91 | *error << "number of samples: " << data.columns() << std::endl; |
---|
92 | *error << "number of features: " << data.rows() << std::endl; |
---|
93 | assert(data.columns()==target.size()); |
---|
94 | |
---|
95 | *error << "building kernel" << std::endl; |
---|
96 | classifier::PolynomialKernelFunction kf(1); |
---|
97 | classifier::Kernel_SEV kernel_core(data,kf); |
---|
98 | classifier::KernelLookup kernel(kernel_core); |
---|
99 | *error << "building Sampler" << std::endl; |
---|
100 | classifier::CrossValidationSampler sampler(target, 30, 3); |
---|
101 | |
---|
102 | statistics::AUC score; |
---|
103 | classifier::FeatureSelectorIR fs(score, 96, 0); |
---|
104 | *error << "building SubsetGenerator" << std::endl; |
---|
105 | classifier::SubsetGenerator subset_data(sampler, data, fs); |
---|
106 | classifier::SubsetGenerator subset_kernel(sampler, kernel, fs); |
---|
107 | return ok; |
---|
108 | } |
---|
109 | |
---|
110 | bool test_nested(std::ostream* error) |
---|
111 | { |
---|
112 | bool ok=true; |
---|
113 | // |
---|
114 | // Test two nested CrossSplitters |
---|
115 | // |
---|
116 | |
---|
117 | *error << "\ntesting two nested crossplitters" << std::endl; |
---|
118 | std::vector<std::string> label(9); |
---|
119 | label[0]=label[1]=label[2]="0"; |
---|
120 | label[3]=label[4]=label[5]="1"; |
---|
121 | label[6]=label[7]=label[8]="2"; |
---|
122 | |
---|
123 | classifier::Target target(label); |
---|
124 | utility::matrix raw_data2(2,9); |
---|
125 | for(size_t i=0;i<raw_data2.rows();i++) |
---|
126 | for(size_t j=0;j<raw_data2.columns();j++) |
---|
127 | raw_data2(i,j)=i*10+10+j+1; |
---|
128 | |
---|
129 | classifier::MatrixLookup data2(raw_data2); |
---|
130 | classifier::CrossValidationSampler cv2(target,3,3); |
---|
131 | classifier::SubsetGenerator cv_test(cv2,data2); |
---|
132 | |
---|
133 | std::vector<size_t> sample_count(10,0); |
---|
134 | std::vector<size_t> test_sample_count(9,0); |
---|
135 | std::vector<size_t> test_class_count(3,0); |
---|
136 | std::vector<double> test_value1(4,0); |
---|
137 | std::vector<double> test_value2(4,0); |
---|
138 | std::vector<double> t_value(4,0); |
---|
139 | std::vector<double> v_value(4,0); |
---|
140 | for(u_long k=0;k<cv_test.size();k++) { |
---|
141 | |
---|
142 | const classifier::DataLookup2D& tv_view=cv_test.training_data(k); |
---|
143 | const classifier::Target& tv_target=cv_test.training_target(k); |
---|
144 | const std::vector<size_t>& tv_index=cv_test.training_index(k); |
---|
145 | const classifier::DataLookup2D& test_view=cv_test.validation_data(k); |
---|
146 | const classifier::Target& test_target=cv_test.validation_target(k); |
---|
147 | const std::vector<size_t>& test_index=cv_test.validation_index(k); |
---|
148 | |
---|
149 | for (size_t i=0; i<test_index.size(); i++) { |
---|
150 | assert(test_index[i]<sample_count.size()); |
---|
151 | test_sample_count[test_index[i]]++; |
---|
152 | test_class_count[target(test_index[i])]++; |
---|
153 | test_value1[0]+=test_view(0,i); |
---|
154 | test_value2[0]+=test_view(1,i); |
---|
155 | test_value1[test_target(i)+1]+=test_view(0,i); |
---|
156 | test_value2[test_target(i)+1]+=test_view(1,i); |
---|
157 | if(test_target(i)!=target(test_index[i])) { |
---|
158 | ok=false; |
---|
159 | *error << "ERROR: incorrect mapping of test indices" << std:: endl; |
---|
160 | } |
---|
161 | } |
---|
162 | |
---|
163 | classifier::CrossValidationSampler sampler_training(tv_target,2,2); |
---|
164 | classifier::SubsetGenerator cv_training(sampler_training,tv_view); |
---|
165 | std::vector<size_t> v_sample_count(6,0); |
---|
166 | std::vector<size_t> t_sample_count(6,0); |
---|
167 | std::vector<size_t> v_class_count(3,0); |
---|
168 | std::vector<size_t> t_class_count(3,0); |
---|
169 | std::vector<size_t> t_class_count2(3,0); |
---|
170 | for(u_long l=0;l<cv_training.size();l++) { |
---|
171 | const classifier::DataLookup2D& t_view=cv_training.training_data(l); |
---|
172 | const classifier::Target& t_target=cv_training.training_target(l); |
---|
173 | const std::vector<size_t>& t_index=cv_training.training_index(l); |
---|
174 | const classifier::DataLookup2D& v_view=cv_training.validation_data(l); |
---|
175 | const classifier::Target& v_target=cv_training.validation_target(l); |
---|
176 | const std::vector<size_t>& v_index=cv_training.validation_index(l); |
---|
177 | |
---|
178 | if (test_index.size()+tv_index.size()!=target.size() |
---|
179 | || t_index.size()+v_index.size() != tv_target.size() |
---|
180 | || test_index.size()+v_index.size()+t_index.size() != target.size()){ |
---|
181 | ok = false; |
---|
182 | *error << "ERROR: size of training samples, validation samples " |
---|
183 | << "and test samples in is invalid." |
---|
184 | << std::endl; |
---|
185 | } |
---|
186 | if (test_index.size()!=3 || tv_index.size()!=6 || t_index.size()!=3 || |
---|
187 | v_index.size()!=3){ |
---|
188 | ok = false; |
---|
189 | *error << "ERROR: size of training, validation, and test samples" |
---|
190 | << " is invalid." |
---|
191 | << " Expected sizes to be 3" << std::endl; |
---|
192 | } |
---|
193 | |
---|
194 | std::vector<size_t> tv_sample_count(6,0); |
---|
195 | for (size_t i=0; i<t_index.size(); i++) { |
---|
196 | assert(t_index[i]<t_sample_count.size()); |
---|
197 | tv_sample_count[t_index[i]]++; |
---|
198 | t_sample_count[t_index[i]]++; |
---|
199 | t_class_count[t_target(i)]++; |
---|
200 | t_class_count2[tv_target(t_index[i])]++; |
---|
201 | t_value[0]+=t_view(0,i); |
---|
202 | t_value[t_target(i)+1]+=t_view(0,i); |
---|
203 | } |
---|
204 | for (size_t i=0; i<v_index.size(); i++) { |
---|
205 | assert(v_index[i]<v_sample_count.size()); |
---|
206 | tv_sample_count[v_index[i]]++; |
---|
207 | v_sample_count[v_index[i]]++; |
---|
208 | v_class_count[v_target(i)]++; |
---|
209 | v_value[0]+=v_view(0,i); |
---|
210 | v_value[v_target(i)+1]+=v_view(0,i); |
---|
211 | } |
---|
212 | |
---|
213 | ok = ok && sample_count_test(tv_sample_count,error); |
---|
214 | |
---|
215 | } |
---|
216 | ok = ok && sample_count_test(v_sample_count,error); |
---|
217 | ok = ok && sample_count_test(t_sample_count,error); |
---|
218 | |
---|
219 | ok = ok && class_count_test(t_class_count,error); |
---|
220 | ok = ok && class_count_test(t_class_count2,error); |
---|
221 | ok = ok && class_count_test(v_class_count,error); |
---|
222 | |
---|
223 | |
---|
224 | } |
---|
225 | ok = ok && sample_count_test(test_sample_count,error); |
---|
226 | ok = ok && class_count_test(test_class_count,error); |
---|
227 | |
---|
228 | if(test_value1[0]!=135 || test_value1[1]!=36 || test_value1[2]!=45 || |
---|
229 | test_value1[3]!=54) { |
---|
230 | ok=false; |
---|
231 | *error << "ERROR: incorrect sums of test values in row 1" |
---|
232 | << " found: " << test_value1[0] << ", " << test_value1[1] |
---|
233 | << ", " << test_value1[2] << " and " << test_value1[3] |
---|
234 | << std::endl; |
---|
235 | } |
---|
236 | |
---|
237 | |
---|
238 | if(test_value2[0]!=225 || test_value2[1]!=66 || test_value2[2]!=75 || |
---|
239 | test_value2[3]!=84) { |
---|
240 | ok=false; |
---|
241 | *error << "ERROR: incorrect sums of test values in row 2" |
---|
242 | << " found: " << test_value2[0] << ", " << test_value2[1] |
---|
243 | << ", " << test_value2[2] << " and " << test_value2[3] |
---|
244 | << std::endl; |
---|
245 | } |
---|
246 | |
---|
247 | if(t_value[0]!=270 || t_value[1]!=72 || t_value[2]!=90 || t_value[3]!=108) { |
---|
248 | ok=false; |
---|
249 | *error << "ERROR: incorrect sums of training values in row 1" |
---|
250 | << " found: " << t_value[0] << ", " << t_value[1] |
---|
251 | << ", " << t_value[2] << " and " << t_value[3] |
---|
252 | << std::endl; |
---|
253 | } |
---|
254 | |
---|
255 | if(v_value[0]!=270 || v_value[1]!=72 || v_value[2]!=90 || v_value[3]!=108) { |
---|
256 | ok=false; |
---|
257 | *error << "ERROR: incorrect sums of validation values in row 1" |
---|
258 | << " found: " << v_value[0] << ", " << v_value[1] |
---|
259 | << ", " << v_value[2] << " and " << v_value[3] |
---|
260 | << std::endl; |
---|
261 | } |
---|
262 | return ok; |
---|
263 | } |
---|
264 | |
---|
265 | bool class_count_test(const std::vector<size_t>& class_count, |
---|
266 | std::ostream* error) |
---|
267 | { |
---|
268 | bool ok=true; |
---|
269 | for (size_t i=0; i<class_count.size(); i++) |
---|
270 | if (class_count[i]==0){ |
---|
271 | ok = false; |
---|
272 | *error << "ERROR: class " << i << " was not in set." |
---|
273 | << " Expected at least one sample from each class." |
---|
274 | << std::endl; |
---|
275 | } |
---|
276 | return ok; |
---|
277 | } |
---|
278 | |
---|
279 | bool sample_count_test(const std::vector<size_t>& sample_count, |
---|
280 | std::ostream* error) |
---|
281 | { |
---|
282 | bool ok=true; |
---|
283 | for (size_t i=0; i<sample_count.size(); i++){ |
---|
284 | if (sample_count[i]!=1){ |
---|
285 | ok = false; |
---|
286 | *error << "ERROR: sample " << i << " was in a group " << sample_count[i] |
---|
287 | << " times." << " Expected to be 1 time" << std::endl; |
---|
288 | } |
---|
289 | } |
---|
290 | return ok; |
---|
291 | } |
---|
292 | |
---|
293 | |
---|
294 | bool test_bootstrap(std::ostream* error) |
---|
295 | { |
---|
296 | bool ok=true; |
---|
297 | std::vector<std::string> label(10,"default"); |
---|
298 | label[2]=label[7]="white"; |
---|
299 | label[4]=label[5]="black"; |
---|
300 | label[6]=label[3]="green"; |
---|
301 | label[8]=label[9]="red"; |
---|
302 | |
---|
303 | classifier::Target target(label); |
---|
304 | utility::matrix raw_data(10,10); |
---|
305 | classifier::MatrixLookup data(raw_data); |
---|
306 | classifier::BootstrapSampler cv(target,3); |
---|
307 | return ok; |
---|
308 | } |
---|
309 | |
---|
310 | |
---|
311 | bool test_cv(std::ostream* error) |
---|
312 | { |
---|
313 | bool ok=true; |
---|
314 | std::vector<std::string> label(10,"default"); |
---|
315 | label[2]=label[7]="white"; |
---|
316 | label[4]=label[5]="black"; |
---|
317 | label[6]=label[3]="green"; |
---|
318 | label[8]=label[9]="red"; |
---|
319 | |
---|
320 | classifier::Target target(label); |
---|
321 | utility::matrix raw_data(10,10); |
---|
322 | classifier::MatrixLookup data(raw_data); |
---|
323 | classifier::CrossValidationSampler cv(target,3,3); |
---|
324 | |
---|
325 | std::vector<size_t> sample_count(10,0); |
---|
326 | for (size_t j=0; j<cv.size(); ++j){ |
---|
327 | std::vector<size_t> class_count(5,0); |
---|
328 | assert(j<cv.size()); |
---|
329 | if (cv.training_index(j).size()+cv.validation_index(j).size()!= |
---|
330 | target.size()){ |
---|
331 | ok = false; |
---|
332 | *error << "ERROR: size of training samples plus " |
---|
333 | << "size of validation samples is invalid." << std::endl; |
---|
334 | } |
---|
335 | if (cv.validation_index(j).size()!=3 && cv.validation_index(j).size()!=4){ |
---|
336 | ok = false; |
---|
337 | *error << "ERROR: size of validation samples is invalid." |
---|
338 | << "expected size to be 3 or 4" << std::endl; |
---|
339 | } |
---|
340 | for (size_t i=0; i<cv.validation_index(j).size(); i++) { |
---|
341 | assert(cv.validation_index(j)[i]<sample_count.size()); |
---|
342 | sample_count[cv.validation_index(j)[i]]++; |
---|
343 | } |
---|
344 | for (size_t i=0; i<cv.training_index(j).size(); i++) { |
---|
345 | class_count[target(cv.training_index(j)[i])]++; |
---|
346 | } |
---|
347 | ok = ok && class_count_test(class_count,error); |
---|
348 | } |
---|
349 | ok = ok && sample_count_test(sample_count,error); |
---|
350 | |
---|
351 | return ok; |
---|
352 | } |
---|