1 | #ifndef _theplu_yat_classifier_gaussian_kernel_function_ |
---|
2 | #define _theplu_yat_classifier_gaussian_kernel_function_ |
---|
3 | |
---|
4 | // $Id$ |
---|
5 | |
---|
6 | /* |
---|
7 | Copyright (C) 2004, 2005, 2006 Jari Häkkinen, Peter Johansson |
---|
8 | Copyright (C) 2007 Peter Johansson |
---|
9 | |
---|
10 | This file is part of the yat library, http://trac.thep.lu.se/yat |
---|
11 | |
---|
12 | The yat library is free software; you can redistribute it and/or |
---|
13 | modify it under the terms of the GNU General Public License as |
---|
14 | published by the Free Software Foundation; either version 2 of the |
---|
15 | License, or (at your option) any later version. |
---|
16 | |
---|
17 | The yat library is distributed in the hope that it will be useful, |
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
20 | General Public License for more details. |
---|
21 | |
---|
22 | You should have received a copy of the GNU General Public License |
---|
23 | along with this program; if not, write to the Free Software |
---|
24 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
25 | 02111-1307, USA. |
---|
26 | */ |
---|
27 | |
---|
28 | #include "KernelFunction.h" |
---|
29 | |
---|
30 | #include <cmath> |
---|
31 | |
---|
32 | namespace theplu { |
---|
33 | namespace yat { |
---|
34 | namespace classifier { |
---|
35 | |
---|
36 | class DataLookup1D; |
---|
37 | |
---|
38 | /// |
---|
39 | /// @brief Class for Gaussian kernel calculations. |
---|
40 | /// |
---|
41 | |
---|
42 | class GaussianKernelFunction : public KernelFunction |
---|
43 | { |
---|
44 | |
---|
45 | public: |
---|
46 | /// |
---|
47 | /// Constructor taking the sigma_ , i.e. the width of the Gaussian,as |
---|
48 | /// input. Default is sigma_ = 1. |
---|
49 | /// |
---|
50 | GaussianKernelFunction(double = 1); |
---|
51 | |
---|
52 | /// |
---|
53 | ///Destructor |
---|
54 | /// |
---|
55 | virtual ~GaussianKernelFunction(void) {}; |
---|
56 | |
---|
57 | /// |
---|
58 | /// returning the scalar product of two vectors in feature space using the |
---|
59 | /// Gaussian kernel. @return \f$ exp(-(x - y)^{2}/\sigma^2) \f$ \n |
---|
60 | /// |
---|
61 | double operator()(const DataLookup1D& x, |
---|
62 | const DataLookup1D& y) const; |
---|
63 | |
---|
64 | /** |
---|
65 | \f$ \exp(-d^2/\sigma^2) \f$ where \f$ d^2 = \sum w_y(x_i-y_i)^2 |
---|
66 | / \sum w_y * N \f$ |
---|
67 | **/ |
---|
68 | double operator()(const DataLookup1D& x, |
---|
69 | const DataLookupWeighted1D& y) const; |
---|
70 | |
---|
71 | /** |
---|
72 | \f$ \exp(-d^2/\sigma^2) \f$ where \f$ d^2 = \sum w_xw_y(x_i-y_i)^2 |
---|
73 | / \sum w_xw_y * N \f$ |
---|
74 | **/ |
---|
75 | double operator()(const DataLookupWeighted1D& x, |
---|
76 | const DataLookupWeighted1D& y) const; |
---|
77 | |
---|
78 | private: |
---|
79 | double sigma2_; |
---|
80 | |
---|
81 | }; // class GaussianKernelFunction |
---|
82 | |
---|
83 | }}} // of namespace classifier, yat, and theplu |
---|
84 | |
---|
85 | #endif |
---|