1 | // $Id$ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "SubsetGenerator.h" |
---|
25 | #include "DataLookup2D.h" |
---|
26 | #include "FeatureSelector.h" |
---|
27 | #include "KernelLookup.h" |
---|
28 | #include "MatrixLookup.h" |
---|
29 | #include "MatrixLookupWeighted.h" |
---|
30 | #include "Target.h" |
---|
31 | |
---|
32 | #include <algorithm> |
---|
33 | #include <cassert> |
---|
34 | #include <utility> |
---|
35 | #include <typeinfo> |
---|
36 | #include <vector> |
---|
37 | |
---|
38 | namespace theplu { |
---|
39 | namespace yat { |
---|
40 | namespace classifier { |
---|
41 | |
---|
42 | SubsetGenerator::SubsetGenerator(const Sampler& sampler, |
---|
43 | const DataLookup2D& data) |
---|
44 | : f_selector_(NULL), sampler_(sampler), weighted_(false) |
---|
45 | { |
---|
46 | assert(target().size()==data.columns()); |
---|
47 | |
---|
48 | training_data_.reserve(sampler_.size()); |
---|
49 | validation_data_.reserve(sampler_.size()); |
---|
50 | for (size_t i=0; i<sampler_.size(); ++i){ |
---|
51 | // Dynamically allocated. Must be deleted in destructor. |
---|
52 | training_data_.push_back(data.training_data(sampler.training_index(i))); |
---|
53 | validation_data_.push_back(data.validation_data(sampler.training_index(i), |
---|
54 | sampler.validation_index(i))); |
---|
55 | |
---|
56 | training_target_.push_back(Target(target(),sampler.training_index(i))); |
---|
57 | validation_target_.push_back(Target(target(), |
---|
58 | sampler.validation_index(i))); |
---|
59 | assert(training_data_.size()==i+1); |
---|
60 | assert(training_target_.size()==i+1); |
---|
61 | assert(validation_data_.size()==i+1); |
---|
62 | assert(validation_target_.size()==i+1); |
---|
63 | } |
---|
64 | |
---|
65 | // No feature selection, hence features same for all partitions |
---|
66 | // and can be stored in features_[0] |
---|
67 | features_.resize(1); |
---|
68 | features_[0].reserve(data.rows()); |
---|
69 | for (size_t i=0; i<data.rows(); ++i) |
---|
70 | features_[0].push_back(i); |
---|
71 | |
---|
72 | assert(training_data_.size()==size()); |
---|
73 | assert(training_target_.size()==size()); |
---|
74 | assert(validation_data_.size()==size()); |
---|
75 | assert(validation_target_.size()==size()); |
---|
76 | } |
---|
77 | |
---|
78 | |
---|
79 | SubsetGenerator::SubsetGenerator(const Sampler& sampler, |
---|
80 | const DataLookup2D& data, |
---|
81 | FeatureSelector& fs) |
---|
82 | : f_selector_(&fs), sampler_(sampler), weighted_(false) |
---|
83 | { |
---|
84 | assert(target().size()==data.columns()); |
---|
85 | |
---|
86 | features_.reserve(size()); |
---|
87 | training_data_.reserve(size()); |
---|
88 | validation_data_.reserve(size()); |
---|
89 | |
---|
90 | // Taking care of three different case. |
---|
91 | // We start with the case of MatrixLookup |
---|
92 | const MatrixLookup* ml = dynamic_cast<const MatrixLookup*>(&data); |
---|
93 | if (ml){ |
---|
94 | for (size_t k=0; k<size(); k++){ |
---|
95 | |
---|
96 | training_target_.push_back(Target(target(),training_index(k))); |
---|
97 | validation_target_.push_back(Target(target(),validation_index(k))); |
---|
98 | // training data with no feature selection |
---|
99 | const MatrixLookup* train_data_all_feat = |
---|
100 | ml->training_data(training_index(k)); |
---|
101 | // use these data to create feature selection |
---|
102 | assert(train_data_all_feat); |
---|
103 | f_selector_->update(*train_data_all_feat, training_target(k)); |
---|
104 | // get features |
---|
105 | features_.push_back(f_selector_->features()); |
---|
106 | assert(train_data_all_feat); |
---|
107 | delete train_data_all_feat; |
---|
108 | |
---|
109 | // Dynamically allocated. Must be deleted in destructor. |
---|
110 | training_data_.push_back(new MatrixLookup(*ml,features_.back(), |
---|
111 | training_index(k))); |
---|
112 | validation_data_.push_back(new MatrixLookup(*ml,features_.back(), |
---|
113 | validation_index(k))); |
---|
114 | } |
---|
115 | } |
---|
116 | else { |
---|
117 | // Second the case of MatrixLookupWeighted |
---|
118 | const MatrixLookupWeighted* ml = |
---|
119 | dynamic_cast<const MatrixLookupWeighted*>(&data); |
---|
120 | if (ml){ |
---|
121 | for (u_long k=0; k<size(); k++){ |
---|
122 | training_target_.push_back(Target(target(),training_index(k))); |
---|
123 | validation_target_.push_back(Target(target(),validation_index(k))); |
---|
124 | // training data with no feature selection |
---|
125 | const MatrixLookupWeighted* train_data_all_feat = |
---|
126 | ml->training_data(training_index(k)); |
---|
127 | // use these data to create feature selection |
---|
128 | f_selector_->update(*train_data_all_feat, training_target(k)); |
---|
129 | // get features |
---|
130 | features_.push_back(f_selector_->features()); |
---|
131 | delete train_data_all_feat; |
---|
132 | |
---|
133 | // Dynamically allocated. Must be deleted in destructor. |
---|
134 | training_data_.push_back(new MatrixLookupWeighted(*ml, |
---|
135 | features_.back(), |
---|
136 | training_index(k) |
---|
137 | )); |
---|
138 | validation_data_.push_back(new MatrixLookupWeighted(*ml, |
---|
139 | features_.back(), |
---|
140 | validation_index(k) |
---|
141 | )); |
---|
142 | } |
---|
143 | } |
---|
144 | else { |
---|
145 | // Third the case of MatrixLookupWeighted |
---|
146 | const KernelLookup* kernel = dynamic_cast<const KernelLookup*>(&data); |
---|
147 | if (kernel){ |
---|
148 | for (u_long k=0; k<size(); k++){ |
---|
149 | training_target_.push_back(Target(target(),training_index(k))); |
---|
150 | validation_target_.push_back(Target(target(),validation_index(k))); |
---|
151 | const DataLookup2D* matrix = kernel->data(); |
---|
152 | // dynamically allocated must be deleted |
---|
153 | const DataLookup2D* training_matrix = |
---|
154 | matrix->training_data(training_index(k)); |
---|
155 | if (matrix->weighted()){ |
---|
156 | const MatrixLookupWeighted& ml = |
---|
157 | dynamic_cast<const MatrixLookupWeighted&>(*matrix); |
---|
158 | f_selector_->update(MatrixLookupWeighted(ml,training_index(k),false), |
---|
159 | training_target(k)); |
---|
160 | } |
---|
161 | else { |
---|
162 | const MatrixLookup& ml = |
---|
163 | dynamic_cast<const MatrixLookup&>(*matrix); |
---|
164 | f_selector_->update(MatrixLookup(ml,training_index(k), false), |
---|
165 | training_target(k)); |
---|
166 | } |
---|
167 | std::vector<size_t> dummie=f_selector_->features(); |
---|
168 | features_.push_back(dummie); |
---|
169 | //features_.push_back(f_selector_->features()); |
---|
170 | assert(kernel); |
---|
171 | const KernelLookup* kl = kernel->selected(features_.back()); |
---|
172 | assert(training_matrix); |
---|
173 | delete training_matrix; |
---|
174 | |
---|
175 | // Dynamically allocated. Must be deleted in destructor. |
---|
176 | training_data_.push_back(kl->training_data(training_index(k))); |
---|
177 | validation_data_.push_back(kl->validation_data(training_index(k), |
---|
178 | validation_index(k))); |
---|
179 | assert(kl); |
---|
180 | delete kl; |
---|
181 | } |
---|
182 | } |
---|
183 | else { |
---|
184 | std::cerr << "Sorry, your type of DataLookup2D (" |
---|
185 | << typeid(data).name() << ")\nis not supported in " |
---|
186 | << "SubsetGenerator with\nFeatureSelection\n"; |
---|
187 | exit(-1); |
---|
188 | } |
---|
189 | } |
---|
190 | } |
---|
191 | assert(training_data_.size()==size()); |
---|
192 | assert(training_target_.size()==size()); |
---|
193 | assert(validation_data_.size()==size()); |
---|
194 | assert(validation_target_.size()==size()); |
---|
195 | } |
---|
196 | |
---|
197 | |
---|
198 | SubsetGenerator::~SubsetGenerator() |
---|
199 | { |
---|
200 | assert(training_data_.size()==validation_data_.size()); |
---|
201 | for (size_t i=0; i<training_data_.size(); i++) |
---|
202 | delete training_data_[i]; |
---|
203 | for (size_t i=0; i<validation_data_.size(); i++) |
---|
204 | delete validation_data_[i]; |
---|
205 | } |
---|
206 | |
---|
207 | }}} // of namespace classifier, yat, and theplu |
---|