1 | // $Id: qQuantileNormalizer.cc 1718 2009-01-14 15:42:57Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2009 Jari Häkkinen |
---|
5 | |
---|
6 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 3 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
20 | */ |
---|
21 | |
---|
22 | #include "qQuantileNormalizer.h" |
---|
23 | |
---|
24 | #include "yat/regression/CSplineInterpolation.h" |
---|
25 | #include "yat/statistics/Averager.h" |
---|
26 | #include "yat/utility/Matrix.h" |
---|
27 | #include "yat/utility/Vector.h" |
---|
28 | #include "yat/utility/VectorBase.h" |
---|
29 | |
---|
30 | #include <algorithm> |
---|
31 | #include <cassert> |
---|
32 | |
---|
33 | namespace theplu { |
---|
34 | namespace yat { |
---|
35 | namespace normalizer { |
---|
36 | |
---|
37 | |
---|
38 | qQuantileNormalizer::Partitioner::Partitioner(const utility::VectorBase& vec, |
---|
39 | unsigned int N) |
---|
40 | : average_(utility::Vector(N)), index_(utility::Vector(N)) |
---|
41 | { |
---|
42 | assert(N>1); |
---|
43 | assert(N<=vec.size()); |
---|
44 | double range=static_cast<double>(vec.size())/N; |
---|
45 | assert(range); |
---|
46 | utility::Vector sortedvec(vec); |
---|
47 | std::sort(sortedvec.begin(),sortedvec.end()); |
---|
48 | unsigned int start=0; |
---|
49 | for (unsigned int i=0; i<N; ++i) { |
---|
50 | unsigned int end = ( i==(N-1) ? sortedvec.size() : |
---|
51 | static_cast<unsigned int>((i+1)*range) ); |
---|
52 | statistics::Averager av; |
---|
53 | for (unsigned int r=start; r<end; ++r) |
---|
54 | av.add(sortedvec(r)); |
---|
55 | average_(i)=av.mean(); |
---|
56 | index_(i)= static_cast<double>(end+start)/2; |
---|
57 | start=end; |
---|
58 | } |
---|
59 | } |
---|
60 | |
---|
61 | |
---|
62 | const utility::Vector& qQuantileNormalizer::Partitioner::averages(void) const |
---|
63 | { |
---|
64 | return average_; |
---|
65 | } |
---|
66 | |
---|
67 | |
---|
68 | const utility::Vector& qQuantileNormalizer::Partitioner::index(void) const |
---|
69 | { |
---|
70 | return index_; |
---|
71 | } |
---|
72 | |
---|
73 | |
---|
74 | size_t qQuantileNormalizer::Partitioner::size(void) const |
---|
75 | { |
---|
76 | return average_.size(); |
---|
77 | } |
---|
78 | |
---|
79 | |
---|
80 | qQuantileNormalizer::qQuantileNormalizer(const utility::VectorBase& target, |
---|
81 | unsigned int Q) |
---|
82 | : target_(Partitioner(target,Q)) |
---|
83 | { |
---|
84 | assert(Q>2); // required by cspline fit |
---|
85 | } |
---|
86 | |
---|
87 | |
---|
88 | void qQuantileNormalizer::operator()(const utility::Matrix& matrix, |
---|
89 | utility::Matrix& result) const |
---|
90 | { |
---|
91 | assert(matrix.rows() == result.rows()); |
---|
92 | assert(matrix.columns() == result.columns()); |
---|
93 | assert(matrix.rows() >= target_.size()); |
---|
94 | |
---|
95 | std::vector<std::vector<size_t> > sorted_index(matrix.rows()); |
---|
96 | for (size_t column=0; column<matrix.columns(); ++column) |
---|
97 | utility::sort_index(sorted_index[column], |
---|
98 | matrix.column_const_view(column)); |
---|
99 | |
---|
100 | for (size_t column=0; column<matrix.columns(); ++column) { |
---|
101 | Partitioner source(matrix.column_const_view(column),target_.size()); |
---|
102 | utility::Vector diff(source.averages()); |
---|
103 | diff-=target_.averages(); |
---|
104 | const utility::Vector& idx=target_.index(); |
---|
105 | regression::CSplineInterpolation cspline(idx,diff); |
---|
106 | |
---|
107 | // linear interpolation for first part, i.e., use first diff for |
---|
108 | // all points in the first part. |
---|
109 | size_t start=0; |
---|
110 | size_t end=static_cast<unsigned int>(idx(0)); |
---|
111 | for (size_t row=start; row<end; ++row) { |
---|
112 | size_t srow=sorted_index[column][row]; |
---|
113 | result(srow,column) = matrix(srow,column) - diff(0); |
---|
114 | } |
---|
115 | |
---|
116 | // cspline interpolation for all data between the first and last |
---|
117 | // parts |
---|
118 | start=static_cast<unsigned int>(idx(0)); |
---|
119 | end=static_cast<unsigned int>(idx(target_.size()-1)); |
---|
120 | for (size_t row=start; row<=end; ++row) { |
---|
121 | size_t srow=sorted_index[column][row]; |
---|
122 | result(srow,column) = matrix(srow,column) - cspline.evaluate(row) ; |
---|
123 | } |
---|
124 | |
---|
125 | // linear interpolation for last part, i.e., use last diff for |
---|
126 | // all points in the last part. |
---|
127 | start=static_cast<unsigned int>(idx(target_.size()-1)+1); |
---|
128 | end=result.rows(); |
---|
129 | for (size_t row=start; row<end; ++row) { |
---|
130 | size_t srow=sorted_index[column][row]; |
---|
131 | result(srow,column) = matrix(srow,column) - diff(diff.size()-1); |
---|
132 | } |
---|
133 | } |
---|
134 | } |
---|
135 | |
---|
136 | }}} // end of namespace normalizer, yat and thep |
---|