1 | #ifndef _theplu_yat_normalizer_qquantile_normalizer_ |
---|
2 | #define _theplu_yat_normalizer_qquantile_normalizer_ |
---|
3 | |
---|
4 | /* |
---|
5 | Copyright (C) 2009 Jari Häkkinen, Peter Johansson |
---|
6 | |
---|
7 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
8 | |
---|
9 | The yat library is free software; you can redistribute it and/or |
---|
10 | modify it under the terms of the GNU General Public License as |
---|
11 | published by the Free Software Foundation; either version 3 of the |
---|
12 | License, or (at your option) any later version. |
---|
13 | |
---|
14 | The yat library is distributed in the hope that it will be useful, |
---|
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
17 | General Public License for more details. |
---|
18 | |
---|
19 | You should have received a copy of the GNU General Public License |
---|
20 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
21 | */ |
---|
22 | |
---|
23 | #include "yat/regression/CSplineInterpolation.h" |
---|
24 | #include "yat/utility/DataWeight.h" |
---|
25 | #include "yat/utility/iterator_traits.h" |
---|
26 | #include "yat/utility/Vector.h" |
---|
27 | #include "yat/utility/yat_assert.h" |
---|
28 | |
---|
29 | #include <algorithm> |
---|
30 | #include <iterator> |
---|
31 | #include <stdexcept> |
---|
32 | #include <vector> |
---|
33 | |
---|
34 | namespace theplu { |
---|
35 | namespace yat { |
---|
36 | namespace utility { |
---|
37 | class VectorBase; |
---|
38 | } |
---|
39 | namespace normalizer { |
---|
40 | |
---|
41 | /** |
---|
42 | \brief Perform Q-quantile normalization |
---|
43 | |
---|
44 | After a Q-quantile normalization each column has approximately |
---|
45 | the same distribution of data (the Q-quantiles are the |
---|
46 | same). Also, within each column the rank of an element is not |
---|
47 | changed. |
---|
48 | |
---|
49 | There is currently no weighted version of qQuantileNormalizer |
---|
50 | |
---|
51 | The normalization goes like this |
---|
52 | - Data is not assumed to be sorted. |
---|
53 | - Partition sorted target data in N parts. N must be 3 larger |
---|
54 | because of requirements from the underlying cspline fit |
---|
55 | - Calculate the arithmetic mean for each part, the mean is |
---|
56 | assigned to the mid point of each part. |
---|
57 | - Do the above for the data to be tranformed (called source |
---|
58 | here). |
---|
59 | - For each part, calculate the difference between the target and |
---|
60 | the source. Now we have N differences d_i with associated rank |
---|
61 | (midpoint of each part). |
---|
62 | - Create a cubic spline fit to this difference vector d. The |
---|
63 | resulting curve is used to recalculate all column values. |
---|
64 | - Use the cubic spline fit for values within the cubic spline |
---|
65 | fit range [midpoint 1st part, midpoint last part]. |
---|
66 | - For data outside the cubic spline fit use linear |
---|
67 | extrapolation, i.e., a constant shift. d_first for points |
---|
68 | below fit range, and d_last for points above fit range. |
---|
69 | |
---|
70 | \since New in yat 0.5 |
---|
71 | */ |
---|
72 | class qQuantileNormalizer |
---|
73 | { |
---|
74 | public: |
---|
75 | /** |
---|
76 | \brief Documentation please. |
---|
77 | |
---|
78 | \a Q is the number of parts and must be within \f$ [3,N] \f$ |
---|
79 | where \f$ N \f$ is the total number of data points in the |
---|
80 | target. However, if \f$ N \f$ is larger than the number of points |
---|
81 | in the data to be normalized the behaviour of the code is |
---|
82 | undefined. Keep \f$ N \f$ equal to or less than the smallest |
---|
83 | number of data points in the target or each data set to be |
---|
84 | normalized against a given target. The lower bound of three is |
---|
85 | due to restrictions in the cspline fit utilized in the |
---|
86 | normalization. |
---|
87 | */ |
---|
88 | template<typename BidirectionalIterator> |
---|
89 | qQuantileNormalizer(BidirectionalIterator first, BidirectionalIterator last, |
---|
90 | unsigned int Q); |
---|
91 | |
---|
92 | /** |
---|
93 | \brief perform the Q-quantile normalization. |
---|
94 | |
---|
95 | It is possible to normalize "in place"; it is permissible for |
---|
96 | \a matrix and \a result to reference the same Matrix. |
---|
97 | |
---|
98 | \note dimensions of \a matrix and \a result must match. |
---|
99 | */ |
---|
100 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
101 | RandomAccessIterator2 operator()(RandomAccessIterator1 first, |
---|
102 | RandomAccessIterator1 last, |
---|
103 | RandomAccessIterator2 result) const; |
---|
104 | |
---|
105 | private: |
---|
106 | |
---|
107 | /** |
---|
108 | \brief Partition a vector of data into equal sizes. |
---|
109 | |
---|
110 | The class also calculates the average of each part and assigns |
---|
111 | the average to the mid point of each part. The midpoint is a |
---|
112 | double, i.e., it is not forced to be an integer index. |
---|
113 | */ |
---|
114 | class Partitioner |
---|
115 | { |
---|
116 | public: |
---|
117 | /** |
---|
118 | \brief Create the partition and perform required calculations. |
---|
119 | */ |
---|
120 | template<typename BidirectionalIterator> |
---|
121 | Partitioner(BidirectionalIterator first, BidirectionalIterator last, |
---|
122 | unsigned int N); |
---|
123 | |
---|
124 | /** |
---|
125 | \brief Return the averages for each part. |
---|
126 | |
---|
127 | \return The average vector. |
---|
128 | */ |
---|
129 | const utility::Vector& averages(void) const; |
---|
130 | |
---|
131 | /** |
---|
132 | \brief Return the mid point for each partition. |
---|
133 | |
---|
134 | \return The index vector. |
---|
135 | */ |
---|
136 | const utility::Vector& index(void) const; |
---|
137 | |
---|
138 | /** |
---|
139 | \return The number of parts. |
---|
140 | */ |
---|
141 | size_t size(void) const; |
---|
142 | |
---|
143 | private: |
---|
144 | // unweighted "constructor" |
---|
145 | template<typename Iterator> |
---|
146 | void build(Iterator first, Iterator last, unsigned int N, |
---|
147 | utility::unweighted_iterator_tag); |
---|
148 | // weighted "constructor" |
---|
149 | template<typename Iterator> |
---|
150 | void build(Iterator first, Iterator last, unsigned int N, |
---|
151 | utility::weighted_iterator_tag); |
---|
152 | void init(const utility::VectorBase&, unsigned int N); |
---|
153 | void init(const std::vector<utility::DataWeight>&, unsigned int N); |
---|
154 | |
---|
155 | utility::Vector average_; |
---|
156 | utility::Vector index_; |
---|
157 | }; |
---|
158 | |
---|
159 | |
---|
160 | Partitioner target_; |
---|
161 | }; |
---|
162 | |
---|
163 | |
---|
164 | // template implementations |
---|
165 | |
---|
166 | template<typename BidirectionalIterator> |
---|
167 | qQuantileNormalizer::qQuantileNormalizer(BidirectionalIterator first, |
---|
168 | BidirectionalIterator last, |
---|
169 | unsigned int Q) |
---|
170 | : target_(Partitioner(first, last, Q)) |
---|
171 | { |
---|
172 | utility::yat_assert<std::runtime_error>(Q>2, |
---|
173 | "qQuantileNormalizer: Q too small"); |
---|
174 | } |
---|
175 | |
---|
176 | |
---|
177 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
178 | RandomAccessIterator2 |
---|
179 | qQuantileNormalizer::operator()(RandomAccessIterator1 first, |
---|
180 | RandomAccessIterator1 last, |
---|
181 | RandomAccessIterator2 result) const |
---|
182 | { |
---|
183 | size_t N = last-first; |
---|
184 | utility::yat_assert<std::runtime_error> |
---|
185 | (N >= target_.size(), "qQuantileNormalizer: Input range too small"); |
---|
186 | |
---|
187 | std::vector<size_t> sorted_index(last-first); |
---|
188 | utility::sort_index(first, last, sorted_index); |
---|
189 | |
---|
190 | Partitioner source(first, last, target_.size()); |
---|
191 | utility::Vector diff(source.averages()); |
---|
192 | diff-=target_.averages(); |
---|
193 | const utility::Vector& idx=target_.index(); |
---|
194 | regression::CSplineInterpolation cspline(idx,diff); |
---|
195 | |
---|
196 | // linear interpolation for first part, i.e., use first diff for |
---|
197 | // all points in the first part. |
---|
198 | size_t start=0; |
---|
199 | size_t end=static_cast<unsigned int>(idx(0)); |
---|
200 | // The first condition below takes care of limiting case number |
---|
201 | // of parts approximately equal to the number of matrix rows and |
---|
202 | // the second condition makes sure that index is large enough |
---|
203 | // when using cspline below ... the static cast above takes the |
---|
204 | // floor whereas we want to take the "roof" forcing next index |
---|
205 | // range to be within interpolation range for the cspline. |
---|
206 | if ((end==0) || (end<idx(0))) |
---|
207 | ++end; |
---|
208 | for (size_t row=start; row<end; ++row) { |
---|
209 | size_t srow=sorted_index[row]; |
---|
210 | result[srow] = first[srow] - diff(0); |
---|
211 | } |
---|
212 | |
---|
213 | // cspline interpolation for all data between the mid points of |
---|
214 | // the first and last part |
---|
215 | start=end; |
---|
216 | end=static_cast<unsigned int>(idx(target_.size()-1)); |
---|
217 | // take care of limiting case number of parts approximately |
---|
218 | // equal to the number of matrix rows |
---|
219 | if (end==(static_cast<size_t>(N-1)) ) |
---|
220 | --end; |
---|
221 | for (size_t row=start; row<=end; ++row) { |
---|
222 | size_t srow=sorted_index[row]; |
---|
223 | result[srow] = first[srow] - cspline.evaluate(row) ; |
---|
224 | } |
---|
225 | |
---|
226 | // linear interpolation for last part, i.e., use last diff for |
---|
227 | // all points in the last part. |
---|
228 | start=end+1; |
---|
229 | end=N; |
---|
230 | for (size_t row=start; row<end; ++row) { |
---|
231 | size_t srow=sorted_index[row]; |
---|
232 | result[srow] = first[srow] - diff(diff.size()-1); |
---|
233 | } |
---|
234 | return result + N; |
---|
235 | } |
---|
236 | |
---|
237 | |
---|
238 | template<typename BidirectionalIterator> |
---|
239 | qQuantileNormalizer::Partitioner::Partitioner(BidirectionalIterator first, |
---|
240 | BidirectionalIterator last, |
---|
241 | unsigned int N) |
---|
242 | : average_(utility::Vector(N)), index_(utility::Vector(N)) |
---|
243 | { |
---|
244 | typedef typename |
---|
245 | utility::weighted_iterator_traits<BidirectionalIterator>::type tag; |
---|
246 | build(first, last, N, tag()); |
---|
247 | |
---|
248 | } |
---|
249 | |
---|
250 | |
---|
251 | template<typename Iterator> |
---|
252 | void qQuantileNormalizer::Partitioner::build(Iterator first, Iterator last, |
---|
253 | unsigned int N, |
---|
254 | utility::unweighted_iterator_tag) |
---|
255 | { |
---|
256 | utility::Vector vec(std::distance(first, last)); |
---|
257 | std::copy(first, last, vec.begin()); |
---|
258 | std::sort(vec.begin(), vec.end()); |
---|
259 | init(vec, N); |
---|
260 | } |
---|
261 | |
---|
262 | |
---|
263 | template<typename Iterator> |
---|
264 | void qQuantileNormalizer::Partitioner::build(Iterator first, |
---|
265 | Iterator last, unsigned int N, |
---|
266 | utility::weighted_iterator_tag) |
---|
267 | { |
---|
268 | std::vector<utility::DataWeight> vec; |
---|
269 | vec.reserve(std::distance(first, last)); |
---|
270 | std::back_insert_iterator<std::vector<utility::DataWeight> > inserter(vec); |
---|
271 | std::copy(first, last, inserter); |
---|
272 | std::sort(vec.begin(), vec.end()); |
---|
273 | init(vec, N); |
---|
274 | } |
---|
275 | |
---|
276 | |
---|
277 | }}} // end of namespace normalizer, yat and thep |
---|
278 | |
---|
279 | #endif |
---|