1 | #ifndef _theplu_yat_normalizer_qquantile_normalizer_ |
---|
2 | #define _theplu_yat_normalizer_qquantile_normalizer_ |
---|
3 | |
---|
4 | /* |
---|
5 | Copyright (C) 2009 Jari Häkkinen, Peter Johansson |
---|
6 | Copyright (C) 2010 Peter Johansson |
---|
7 | |
---|
8 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
9 | |
---|
10 | The yat library is free software; you can redistribute it and/or |
---|
11 | modify it under the terms of the GNU General Public License as |
---|
12 | published by the Free Software Foundation; either version 3 of the |
---|
13 | License, or (at your option) any later version. |
---|
14 | |
---|
15 | The yat library is distributed in the hope that it will be useful, |
---|
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
18 | General Public License for more details. |
---|
19 | |
---|
20 | You should have received a copy of the GNU General Public License |
---|
21 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "yat/regression/CSplineInterpolation.h" |
---|
25 | #include "yat/utility/DataIterator.h" |
---|
26 | #include "yat/utility/DataWeight.h" |
---|
27 | #include "yat/utility/iterator_traits.h" |
---|
28 | #include "yat/utility/sort_index.h" |
---|
29 | #include "yat/utility/Vector.h" |
---|
30 | #include "yat/utility/WeightIterator.h" |
---|
31 | #include "yat/utility/yat_assert.h" |
---|
32 | |
---|
33 | #include <algorithm> |
---|
34 | #include <cmath> |
---|
35 | #include <iterator> |
---|
36 | #include <limits> |
---|
37 | #include <numeric> |
---|
38 | #include <stdexcept> |
---|
39 | #include <vector> |
---|
40 | |
---|
41 | namespace theplu { |
---|
42 | namespace yat { |
---|
43 | namespace utility { |
---|
44 | class VectorBase; |
---|
45 | } |
---|
46 | namespace normalizer { |
---|
47 | |
---|
48 | /** |
---|
49 | \brief Perform Q-quantile normalization |
---|
50 | |
---|
51 | Perform a Q-quantile normalization on a \a source range, after |
---|
52 | which it will approximately have the same distribution of data as |
---|
53 | the \a target range (the Q-quantiles are the same). The rank of |
---|
54 | an element in the \a source range is not changed. |
---|
55 | |
---|
56 | The class works also with unweighed ranges, and there is no |
---|
57 | restriction that weighted \a source range requires weighted \a |
---|
58 | target range or vice versa. |
---|
59 | |
---|
60 | Normalization goes like this: |
---|
61 | - Data are not assumed to be sorted. |
---|
62 | - Partition sorted \a target data in Q parts. Q must be 3 or larger |
---|
63 | because of requirements from the underlying cubic spline fit |
---|
64 | - Calculate the arithmetic (weighted) mean for each part, the mean is |
---|
65 | assigned to the mid point of each part. |
---|
66 | - Do the above for the data to be transformed (called \a source |
---|
67 | here). |
---|
68 | - For each part, calculate the difference between the \a target |
---|
69 | and \a the source. Now we have \a Q differences \f$ d_i \f$ |
---|
70 | with associated rank (midpoint of each part). |
---|
71 | - Create a cubic spline fit to this difference vector \a d. The |
---|
72 | resulting curve is used to recalculate all values in \a source. |
---|
73 | - Use the cubic spline fit for values within the cubic spline |
---|
74 | fit range [midpoint 1st part, midpoint last part]. |
---|
75 | - For data outside the cubic spline fit use linear |
---|
76 | extrapolation, i.e., a constant shift. \f$ d_{first} \f$ for |
---|
77 | points below fit range, and \f$ d_{last} \f$ for points above fit |
---|
78 | range. |
---|
79 | |
---|
80 | \since New in yat 0.5 |
---|
81 | */ |
---|
82 | class qQuantileNormalizer |
---|
83 | { |
---|
84 | public: |
---|
85 | /** |
---|
86 | \brief Constructor |
---|
87 | |
---|
88 | Divides a sorted copy of range [\a first,\a last) into \a Q |
---|
89 | parts. Parts are divided such that the sum of weights is |
---|
90 | approximately the same in the different parts. If a relative |
---|
91 | weight, \f$ w_i / \sum w_i \f$, is larger than 1/Q this might |
---|
92 | be difficult to achieve, in which case a an exception is |
---|
93 | thrown. In the unweighted case this implies that \a Q should be |
---|
94 | smaller (or equal) than number of elements in [\a first, \a |
---|
95 | last). |
---|
96 | |
---|
97 | The range supplied to the constructor sets the target |
---|
98 | distribution. |
---|
99 | |
---|
100 | As the \a source range is also divided into \a Q parts (when |
---|
101 | operator() is called), it is recommended to keep \a Q smaller |
---|
102 | (or equal) than the size of ranges that will be normalized. |
---|
103 | |
---|
104 | Also, \a Q must not be smaller than 3 due to restrictions in |
---|
105 | the cubic spline fit utilized in the normalization. |
---|
106 | |
---|
107 | \b Type \b Requirements: |
---|
108 | - \c ForwardIterator is a model of \forward_iterator. |
---|
109 | - \c ForwardIterator is a \ref concept_data_iterator |
---|
110 | */ |
---|
111 | template<typename ForwardIterator> |
---|
112 | qQuantileNormalizer(ForwardIterator first, ForwardIterator last, |
---|
113 | unsigned int Q); |
---|
114 | |
---|
115 | /** |
---|
116 | \brief Perform the Q-quantile normalization. |
---|
117 | |
---|
118 | Elements in [\a first, \a last) are normalized as described |
---|
119 | above and the result is assigned to [\a result, \a result + \a |
---|
120 | last-\a first). Input range [\a first, \a last) is not |
---|
121 | modified. If ranges are weighted, the weights are copied from |
---|
122 | [\a first, \a last) to \a result range. |
---|
123 | |
---|
124 | It is possible to normalize "in place"; it is permissible for |
---|
125 | \a first and \a result to be the same. However, as assignment |
---|
126 | occurs sequentially, the operation is undefined if \a result is |
---|
127 | the same as any in range [\a first, \a last). |
---|
128 | |
---|
129 | \b Type Requirements: |
---|
130 | - \c RandomAccessIterator1 is a model of \random_access_iterator |
---|
131 | - \c RandomAccessIterator1 is a \ref concept_data_iterator |
---|
132 | - \c RandomAccessIterator1's value type is convertible to |
---|
133 | \c RandomAccessIterator2's value type |
---|
134 | - \c RandomAccessIterator2 is a model of \random_access_iterator |
---|
135 | - \c RandomAccessIterator2 is mutable. |
---|
136 | |
---|
137 | */ |
---|
138 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
139 | void operator()(RandomAccessIterator1 first, RandomAccessIterator1 last, |
---|
140 | RandomAccessIterator2 result) const; |
---|
141 | |
---|
142 | private: |
---|
143 | |
---|
144 | /** |
---|
145 | \brief Partition a range of data into equal sizes. |
---|
146 | |
---|
147 | Copy the range [first, last), sort the copy, and divide the |
---|
148 | sorted copy in Q parts. The parts are created such that the total |
---|
149 | weight in a part is approximately W/Q where W is the total weight |
---|
150 | (over all parts). The class calculates the average value in each |
---|
151 | part and also the "quantile". |
---|
152 | */ |
---|
153 | class Partitioner |
---|
154 | { |
---|
155 | public: |
---|
156 | /** |
---|
157 | \brief Create the partition and perform required calculations. |
---|
158 | */ |
---|
159 | template<typename ForwardIterator> |
---|
160 | Partitioner(ForwardIterator first, ForwardIterator last, |
---|
161 | unsigned int N); |
---|
162 | |
---|
163 | /** |
---|
164 | \brief Return the averages for each part. |
---|
165 | |
---|
166 | \return The average vector. |
---|
167 | */ |
---|
168 | const utility::Vector& averages(void) const; |
---|
169 | |
---|
170 | /** |
---|
171 | The quantile (here) is defined as (w_lower + w_upper) / 2W, |
---|
172 | where w_lower is the total weight of elements smaller than the |
---|
173 | smallest element in the part, and w_upper is the total weight |
---|
174 | of elements smaller (or equal) than the largest value in the |
---|
175 | part. |
---|
176 | |
---|
177 | In the unweighted case all weights are 1.0, which implies q_0 = |
---|
178 | n_0/N, q_1 = (n_0+n_1/2)/N, q_2 = (n_0+n_1+n_2/2)/N where n_i |
---|
179 | is number of elements in ith part. |
---|
180 | |
---|
181 | \return The quantiles vector. |
---|
182 | */ |
---|
183 | const utility::Vector& quantiles(void) const; |
---|
184 | |
---|
185 | /** |
---|
186 | \return The number of parts. |
---|
187 | */ |
---|
188 | size_t size(void) const; |
---|
189 | |
---|
190 | private: |
---|
191 | // unweighted "constructor" |
---|
192 | template<typename ForwardIterator> |
---|
193 | void build(ForwardIterator first, ForwardIterator last, unsigned int N, |
---|
194 | utility::unweighted_iterator_tag); |
---|
195 | // weighted "constructor" |
---|
196 | template<typename ForwardIterator> |
---|
197 | void build(ForwardIterator first, ForwardIterator last, unsigned int N, |
---|
198 | utility::weighted_iterator_tag); |
---|
199 | void init(const utility::VectorBase&, unsigned int N); |
---|
200 | void init(const std::vector<utility::DataWeight>&, unsigned int N); |
---|
201 | |
---|
202 | utility::Vector average_; |
---|
203 | utility::Vector quantiles_; |
---|
204 | }; |
---|
205 | |
---|
206 | Partitioner target_; |
---|
207 | |
---|
208 | // unweighted version |
---|
209 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
210 | void normalize(const Partitioner& source,RandomAccessIterator1 first, |
---|
211 | RandomAccessIterator1 last, RandomAccessIterator2 result, |
---|
212 | utility::unweighted_iterator_tag tag) const; |
---|
213 | |
---|
214 | // weighted version |
---|
215 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
216 | void normalize(const Partitioner& source,RandomAccessIterator1 first, |
---|
217 | RandomAccessIterator1 last, RandomAccessIterator2 result, |
---|
218 | utility::weighted_iterator_tag tag) const; |
---|
219 | }; |
---|
220 | |
---|
221 | |
---|
222 | // template implementations |
---|
223 | |
---|
224 | template<typename ForwardIterator> |
---|
225 | qQuantileNormalizer::qQuantileNormalizer(ForwardIterator first, |
---|
226 | ForwardIterator last, |
---|
227 | unsigned int Q) |
---|
228 | : target_(Partitioner(first, last, Q)) |
---|
229 | { |
---|
230 | utility::yat_assert<std::runtime_error>(Q>2, |
---|
231 | "qQuantileNormalizer: Q too small"); |
---|
232 | } |
---|
233 | |
---|
234 | |
---|
235 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
236 | void qQuantileNormalizer::operator()(RandomAccessIterator1 first, |
---|
237 | RandomAccessIterator1 last, |
---|
238 | RandomAccessIterator2 result) const |
---|
239 | { |
---|
240 | Partitioner source(first, last, target_.size()); |
---|
241 | typename utility::weighted_iterator_traits<RandomAccessIterator2>::type tag; |
---|
242 | normalize(source, first, last, result, tag); |
---|
243 | } |
---|
244 | |
---|
245 | |
---|
246 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
247 | void |
---|
248 | qQuantileNormalizer::normalize(const qQuantileNormalizer::Partitioner& source, |
---|
249 | RandomAccessIterator1 first, |
---|
250 | RandomAccessIterator1 last, |
---|
251 | RandomAccessIterator2 result, |
---|
252 | utility::unweighted_iterator_tag tag) const |
---|
253 | { |
---|
254 | utility::check_iterator_is_unweighted(first); |
---|
255 | utility::check_iterator_is_unweighted(result); |
---|
256 | size_t N = last-first; |
---|
257 | utility::yat_assert<std::runtime_error> |
---|
258 | (N >= target_.size(), "qQuantileNormalizer: Input range too small"); |
---|
259 | |
---|
260 | std::vector<size_t> sorted_index(last-first); |
---|
261 | utility::sort_index(first, last, sorted_index); |
---|
262 | |
---|
263 | utility::Vector diff(source.averages()); |
---|
264 | diff-=target_.averages(); |
---|
265 | const utility::Vector& idx=target_.quantiles(); |
---|
266 | regression::CSplineInterpolation cspline(idx,diff); |
---|
267 | |
---|
268 | // linear extrapolation for first part, i.e., use first diff for |
---|
269 | // all points in the first part. |
---|
270 | size_t start=0; |
---|
271 | size_t end = static_cast<size_t>(std::ceil(N*idx(0) - 0.5)); |
---|
272 | // take care of limiting case number of parts approximately equal |
---|
273 | // to the number of elements in range. |
---|
274 | if (end==0) |
---|
275 | ++end; |
---|
276 | for (size_t i=start; i<end; ++i) { |
---|
277 | size_t si = sorted_index[i]; |
---|
278 | result[si] = first[si] - diff(0); |
---|
279 | } |
---|
280 | |
---|
281 | using utility::yat_assert; |
---|
282 | |
---|
283 | // cspline interpolation for all data between the mid points of |
---|
284 | // the first and last part |
---|
285 | start=end; |
---|
286 | end = static_cast<size_t>(std::ceil(N*idx(idx.size()-1) - 0.5)); |
---|
287 | if (end>=N) |
---|
288 | end = N-1; |
---|
289 | for ( size_t i=start; i<end; ++i) { |
---|
290 | size_t si = sorted_index[i]; |
---|
291 | |
---|
292 | yat_assert<std::runtime_error>((i+0.5)/N>idx(0), |
---|
293 | "qQuantileNormalizer: invalid input to cspline"); |
---|
294 | result[si] = first[si] - cspline.evaluate((i+0.5)/N); |
---|
295 | } |
---|
296 | |
---|
297 | // linear extrapolation for last part, i.e., use last diff for |
---|
298 | // all points in the last part. |
---|
299 | for (size_t i=end ; i<N; ++i) { |
---|
300 | size_t si = sorted_index[i]; |
---|
301 | result[si] = first[si] - diff(diff.size()-1); |
---|
302 | } |
---|
303 | } |
---|
304 | |
---|
305 | |
---|
306 | template<typename RandomAccessIterator1, typename RandomAccessIterator2> |
---|
307 | void qQuantileNormalizer::normalize(const Partitioner& source, |
---|
308 | RandomAccessIterator1 first, |
---|
309 | RandomAccessIterator1 last, |
---|
310 | RandomAccessIterator2 result, |
---|
311 | utility::weighted_iterator_tag tag) const |
---|
312 | { |
---|
313 | // copy the weights |
---|
314 | std::copy(utility::weight_iterator(first), |
---|
315 | utility::weight_iterator(last), |
---|
316 | utility::weight_iterator(result)); |
---|
317 | |
---|
318 | double total_w = std::accumulate(utility::weight_iterator(first), |
---|
319 | utility::weight_iterator(last), 0.0); |
---|
320 | |
---|
321 | std::vector<size_t> sorted_index(last-first); |
---|
322 | // Code to avoid problems with NaN (ticket:535) |
---|
323 | // utility::sort_index(utility::data_iterator(first), |
---|
324 | // utility::data_iterator(last), sorted_index); |
---|
325 | // ... above statement replaced below code block |
---|
326 | { |
---|
327 | using namespace utility; |
---|
328 | std::vector<double> vec; |
---|
329 | vec.reserve(std::distance(first, last)); |
---|
330 | std::copy(utility::data_iterator(first), utility::data_iterator(last), |
---|
331 | std::back_inserter(vec)); |
---|
332 | for (std::vector<double>::iterator i(vec.begin()); i!=vec.end(); ++i) |
---|
333 | if (std::isnan(*i)) |
---|
334 | *i = std::numeric_limits<double>::infinity(); |
---|
335 | utility::sort_index(vec.begin(), vec.end(), sorted_index); |
---|
336 | } |
---|
337 | // end Code to avoid problems with NaN (ticket:535) |
---|
338 | |
---|
339 | utility::Vector diff(source.averages()); |
---|
340 | diff-=target_.averages(); |
---|
341 | const utility::Vector& idx=target_.quantiles(); |
---|
342 | regression::CSplineInterpolation cspline(idx,diff); |
---|
343 | |
---|
344 | double sum_w=0; |
---|
345 | utility::iterator_traits<RandomAccessIterator1> traits1; |
---|
346 | utility::iterator_traits<RandomAccessIterator2> traits2; |
---|
347 | for (size_t i=0; i<sorted_index.size(); ++i) { |
---|
348 | size_t si = sorted_index[i]; |
---|
349 | double w = (sum_w + 0.5*traits1.weight(first+si))/total_w; |
---|
350 | double correction = 0; |
---|
351 | if (w <= idx(0)) { |
---|
352 | // linear extrapolation for first part, i.e., use first diff for |
---|
353 | // all points in the first part. |
---|
354 | correction = diff(0); |
---|
355 | } |
---|
356 | else if (w < idx(idx.size()-1) ) { |
---|
357 | // cspline interpolation for all data between the mid points of |
---|
358 | // the first and last part |
---|
359 | correction = cspline.evaluate(w); |
---|
360 | } |
---|
361 | else { |
---|
362 | // linear extrapolation for last part, i.e., use last diff for |
---|
363 | // all points in the last part. |
---|
364 | correction = diff(diff.size()-1); |
---|
365 | } |
---|
366 | traits2.data(result+si) = traits1.data(first+si) - correction; |
---|
367 | sum_w += traits1.weight(first+si); |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | |
---|
372 | template<typename ForwardIterator> |
---|
373 | qQuantileNormalizer::Partitioner::Partitioner(ForwardIterator first, |
---|
374 | ForwardIterator last, |
---|
375 | unsigned int N) |
---|
376 | : average_(utility::Vector(N)), quantiles_(utility::Vector(N)) |
---|
377 | { |
---|
378 | build(first, last, N, |
---|
379 | typename utility::weighted_iterator_traits<ForwardIterator>::type()); |
---|
380 | } |
---|
381 | |
---|
382 | |
---|
383 | template<typename ForwardIterator> |
---|
384 | void qQuantileNormalizer::Partitioner::build(ForwardIterator first, |
---|
385 | ForwardIterator last, |
---|
386 | unsigned int N, |
---|
387 | utility::unweighted_iterator_tag) |
---|
388 | { |
---|
389 | utility::Vector vec(std::distance(first, last)); |
---|
390 | std::copy(first, last, vec.begin()); |
---|
391 | std::sort(vec.begin(), vec.end()); |
---|
392 | init(vec, N); |
---|
393 | } |
---|
394 | |
---|
395 | |
---|
396 | template<typename ForwardIterator> |
---|
397 | void qQuantileNormalizer::Partitioner::build(ForwardIterator first, |
---|
398 | ForwardIterator last, |
---|
399 | unsigned int N, |
---|
400 | utility::weighted_iterator_tag) |
---|
401 | { |
---|
402 | using namespace utility; |
---|
403 | std::vector<DataWeight> vec; |
---|
404 | vec.reserve(std::distance(first, last)); |
---|
405 | std::back_insert_iterator<std::vector<DataWeight> > inserter(vec); |
---|
406 | std::copy(first, last, inserter); |
---|
407 | std::sort(vec.begin(), vec.end()); |
---|
408 | init(vec, N); |
---|
409 | } |
---|
410 | |
---|
411 | |
---|
412 | }}} // end of namespace normalizer, yat and thep |
---|
413 | |
---|
414 | #endif |
---|