source: trunk/yat/random/random.h @ 1487

Last change on this file since 1487 was 1487, checked in by Jari Häkkinen, 15 years ago

Addresses #436. GPL license copy reference should also be updated.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 14.1 KB
Line 
1#ifndef _theplu_yat_random_
2#define _theplu_yat_random_
3
4// $Id: random.h 1487 2008-09-10 08:41:36Z jari $
5
6/*
7  Copyright (C) 2005, 2006, 2007 Jari Häkkinen, Peter Johansson
8  Copyright (C) 2008 Peter Johansson
9
10  This file is part of the yat library, http://dev.thep.lu.se/yat
11
12  The yat library is free software; you can redistribute it and/or
13  modify it under the terms of the GNU General Public License as
14  published by the Free Software Foundation; either version 3 of the
15  License, or (at your option) any later version.
16
17  The yat library is distributed in the hope that it will be useful,
18  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  General Public License for more details.
21
22  You should have received a copy of the GNU General Public License
23  along with yat. If not, see <http://www.gnu.org/licenses/>.
24*/
25
26#include "yat/statistics/Histogram.h"
27
28#include <gsl/gsl_rng.h>
29#include <gsl/gsl_randist.h>
30
31#include <algorithm>
32#include <string>
33
34namespace theplu {
35namespace yat {
36namespace random {
37
38  //forward declarion
39  class RNG_state;
40
41  ///
42  /// @brief Random Number Generator
43  ///
44  /// The RNG class is wrapper to the GSL random number generator
45  /// (rng). This class provides a single global instance of the rng,
46  /// and makes sure there is only one point of access to the
47  /// generator.
48  ///
49  /// There is information about how to change seeding and generators
50  /// at run time without recompilation using environment variables in
51  /// the GSL manual (Chapter on random number generators). RNG of
52  /// course support seeding at compile time if you don't want to
53  /// bother about environment variables and GSL.
54  ///
55  /// There are many different rng's available in GSL. Currently only
56  /// the default generator is implemented and no other one is
57  /// choosable through the class interface. This means that you have
58  /// to fall back to the use of environment variables as described in
59  /// the GSL documentation, or be bold and request support for other
60  /// rng's through the class interface.
61  ///
62  /// Not all GSL functionality is implemented, we'll add
63  /// functionality when needed and may do it when requested. Better
64  /// yet, supply us with code and we will probably add it to the code
65  /// (BUT remember to implement reasonable tests for your code and
66  /// follow the coding style.)
67  ///
68  /// The current implementation is NOT thread safe since the RNG is
69  /// implemented as a singleton. However, the underlying GSL rng's
70  /// support thread safety since each instance of GSL rng's keep
71  /// track of their own state accordning to GSL documentation.
72  ///
73  /// @see Design Patterns (the singleton and adapter pattern). GSL
74  /// documentation.
75  ///
76  class RNG
77  {
78  public:
79
80    ///
81    /// @brief Get an instance of the random number generator.
82    ///
83    /// Get an instance of the random number generator. If the random
84    /// number generator is not already created, the call will create
85    /// a new generator and use the default seed. The seed must be
86    /// changed with the seed or seed_from_devurandom member
87    /// functions.
88    ///
89    /// @return A pointer to the random number generator.
90    ///
91    /// @see seed and seed_from_devurandom
92    ///
93    static RNG* instance(void);
94
95    ///
96    /// @brief Returns the largest number that the random number
97    /// generator can return.
98    ///
99    unsigned long max(void) const;
100
101    ///
102    /// @brief Returns the smallest number that the random number
103    /// generator can return.
104    ///
105    unsigned long min(void) const;
106
107    ///
108    /// @brief Returns the name of the random number generator
109    ///
110    std::string name(void) const;
111
112    ///
113    /// @return const pointer to underlying GSL random generator.
114    ///
115    const gsl_rng* rng(void) const;
116
117    ///
118    /// @brief Set the seed \a s for the rng.
119    ///
120    /// Set the seed \a s for the rng. If \a s is zero, a default
121    /// value from the rng's original implementation is used (cf. GSL
122    /// documentation).
123    ///
124    /// @see seed_from_devurandom
125    ///
126    void seed(unsigned long s) const;
127
128    ///
129    /// @brief Seed the rng using the /dev/urandom device.
130    ///
131    /// @return The seed acquired from /dev/urandom.
132    ///
133    unsigned long seed_from_devurandom(void);
134
135    /**
136       \brief Set the state to \a state.
137
138       \return 0 on success, non-zero otherwise.
139
140       \see gsl_rng_memcpy
141    */
142    int set_state(const RNG_state&);
143
144  private:
145    RNG(void);
146
147    /**
148       \brief Not implemented.
149
150       This copy contructor is not implemented. The constructor is
151       declared in order to avoid compiler generated default copy
152       constructor.
153     */
154    RNG(const RNG&);
155
156    virtual ~RNG(void);
157
158    static RNG* instance_;
159    gsl_rng* rng_;
160  };
161
162
163  ///
164  /// @brief Class holding state of a random generator
165  ///
166  class RNG_state
167  {
168  public:
169    ///
170    /// @brief Constructor
171    ///
172    RNG_state(const RNG*);
173
174    ///
175    /// @brief Destructor
176    ///
177    ~RNG_state(void);
178
179    ///
180    /// @return const pointer to underlying GSL random generator.
181    ///
182    const gsl_rng* rng(void) const;
183
184  private:
185    gsl_rng* rng_;
186
187  };
188   
189
190  // --------------------- Discrete distribtuions ---------------------
191
192  ///
193  /// @brief Discrete random number distributions.
194  ///
195  /// Abstract base class for discrete random number
196  /// distributions. Given K discrete events with different
197  /// probabilities \f$ P[k] \f$, produce a random value k consistent
198  /// with its probability.
199  ///
200  class Discrete
201  {
202  public:
203    ///
204    /// @brief Constructor
205    ///
206    Discrete(void);
207
208    ///
209    /// @brief The destructor
210    ///
211    virtual ~Discrete(void);
212
213    ///
214    /// @brief Set the seed to \a s.
215    ///
216    /// Set the seed to \a s in the underlying rng. If \a s is zero, a
217    /// default value from the rng's original implementation is used
218    /// (cf. GSL documentation).
219    ///
220    /// @see seed_from_devurandom, RNG::seed_from_devurandom, RNG::seed
221    ///
222    void seed(unsigned long s) const;
223
224    ///
225    /// @brief Set the seed using the /dev/urandom device.
226    ///
227    /// @return The seed acquired from /dev/urandom.
228    ///
229    /// @see seed, RNG::seed_from_devurandom, RNG::seed
230    ///
231    unsigned long seed_from_devurandom(void);
232
233    ///
234    /// @return A random number.
235    ///
236    virtual unsigned long operator()(void) const = 0;
237   
238  protected:
239    /// GSL random gererator
240    RNG* rng_;
241  };
242
243  ///
244  /// @brief General
245  ///
246  class DiscreteGeneral : public Discrete
247  {
248  public:
249    ///
250    /// @brief Constructor
251    ///
252    /// @param hist is a Histogram defining the probability distribution
253    ///
254    DiscreteGeneral(const statistics::Histogram& hist);
255   
256    ///
257    /// @brief Destructor
258    ///
259    ~DiscreteGeneral(void);
260
261    ///
262    /// The generated number is an integer and proportinal to the
263    /// frequency in the corresponding histogram bin. In other words,
264    /// the probability that 0 is returned is proportinal to the size
265    /// of the first bin.
266    ///
267    /// @return A random number.
268    ///
269    unsigned long operator()(void) const;
270
271  private:
272     gsl_ran_discrete_t* gen_;
273  };
274
275  /**
276     @brief Discrete uniform distribution
277 
278     Discrete uniform distribution also known as the "equally likely
279     outcomes" distribution. Each outcome, in this case an integer
280     from [0,n-1] , have equal probability to occur.
281     
282     Distribution function \f$ p(k) = \frac{1}{n+1} \f$ for \f$ 0 \le
283     k < n \f$ \n
284     Expectation value: \f$ \frac{n-1}{2} \f$ \n
285     Variance: \f$ \frac{1}{12}(n-1)(n+1) \f$
286  */
287  class DiscreteUniform : public Discrete
288  {
289  public:
290    /**
291       \brief Constructor.
292
293       The generator will generate integers within the range \f$
294       [0,n-1] \f$. If \a n is zero, then the whole range of the
295       underlying RNG will be used \f$ [min,max] \f$. Setting \a n to
296       zero is the preferred way to sample the whole range of the
297       underlying RNG, i.e. not setting \n to RNG.max.
298
299       \throw If \a n is larger than the maximum number the underlying
300       random number generator can return, then a GSL_error exception
301       is thrown.
302    */
303    DiscreteUniform(unsigned long n=0);
304
305    /**
306       \brief Get a random number
307
308       The returned integer is either in the range [RNG.min,RNG.max]
309       or [0,n-1] depending on how the random number generator was
310       created.
311
312       \see DiscreteUniform(const unsigned long n=0)
313    */
314    unsigned long operator()(void) const;
315
316    /**
317       \brief Get a random integer in the range \f$ [0,n-1] \f$.
318
319       All integers in the range [0,n-1] are equally likely. This
320       function should be avoided for sampling the whole range of the
321       underlying RNG.
322
323       \throw GSL_error if \a n is larger than the range of the
324       underlying generator.
325    */
326    unsigned long operator()(unsigned long n) const;
327
328  private:
329    unsigned long range_;
330  };
331
332  /**
333     @brief Poisson Distribution
334 
335     Having a Poisson process (i.e. no memory), number of occurences
336     within a given time window is Poisson distributed. This
337     distribution is the limit of a Binomial distribution when number
338     of attempts is large, and the probability for one attempt to be
339     succesful is small (in such a way that the expected number of
340     succesful attempts is \f$ m \f$.
341     
342     Probability function \f$ p(k) = e^{-m}\frac{m^k}{k!} \f$ for \f$ 0 \le
343     k  \f$ \n
344     Expectation value: \f$ m \f$ \n
345     Variance: \f$ m \f$
346  */
347  class Poisson : public Discrete
348  {
349  public:
350    ///
351    /// @brief Constructor
352    ///
353    /// @param m is expectation value
354    ///
355    Poisson(const double m=1);
356
357    ///
358    /// @return A Poisson distributed number.
359    ///
360    unsigned long operator()(void) const;
361
362    ///
363    /// @return A Poisson distributed number with expectation value
364    /// \a m
365    ///
366    /// @note this operator ignores parameters set in Constructor
367    ///
368    unsigned long operator()(const double m) const;
369
370  private:
371    double m_;
372  };
373
374  // --------------------- Continuous distribtuions ---------------------
375
376  ///
377  /// @brief Continuous random number distributions.
378  ///
379  /// Abstract base class for continuous random number distributions.
380  ///
381  class Continuous
382  {
383  public:
384
385    ///
386    /// @brief Constructor
387    ///
388    Continuous(void);
389
390    ///
391    /// @brief The destructor
392    ///
393    virtual ~Continuous(void);
394
395    ///
396    /// @brief Set the seed to \a s.
397    ///
398    /// Set the seed to \a s in the underlying rng. If \a s is zero, a
399    /// default value from the rng's original implementation is used
400    /// (cf. GSL documentation).
401    ///
402    /// @see seed_from_devurandom, RNG::seed_from_devurandom, RNG::seed
403    ///
404    void seed(unsigned long s) const;
405
406    ///
407    /// @brief Set the seed using the /dev/urandom device.
408    ///
409    /// @return The seed acquired from /dev/urandom.
410    ///
411    /// @see seed, RNG::seed_from_devurandom, RNG::seed
412    ///
413    unsigned long seed_from_devurandom(void) 
414    { return rng_->seed_from_devurandom(); }
415
416    ///
417    /// @return A random number
418    ///
419    virtual double operator()(void) const = 0;
420
421  protected:
422    /// pointer to GSL random generator
423    RNG* rng_;
424  };
425
426  // ContinuousUniform is declared before ContinuousGeneral to avoid
427  // forward declaration
428  ///
429  /// @brief Uniform distribution
430  ///
431  /// Class for generating a random number from a uniform distribution
432  /// in the range [0,1), i.e. zero is included but not 1.
433  ///
434  /// Distribution function \f$ f(x) = 1 \f$ for \f$ 0 \le x < 1 \f$ \n
435  /// Expectation value: 0.5 \n
436  /// Variance: \f$ \frac{1}{12} \f$
437  ///
438  class ContinuousUniform : public Continuous
439  {
440  public:
441    double operator()(void) const;
442  };
443
444  ///
445  /// @brief Generates numbers from a histogram in a continuous manner.
446  ///
447  class ContinuousGeneral : public Continuous
448  {
449  public:
450    ///
451    /// @brief Constructor
452    ///
453    /// @param hist is a Histogram defining the probability distribution
454    ///
455    ContinuousGeneral(const statistics::Histogram& hist);
456
457    ///
458    /// The number is generated in a two step process. First the bin
459    /// in the histogram is randomly selected (see
460    /// DiscreteGeneral). Then a number is generated uniformly from
461    /// the interval defined by the bin.
462    ///
463    /// @return A random number.
464    ///
465    double operator()(void) const;
466
467  private:
468    const DiscreteGeneral discrete_;
469    const statistics::Histogram hist_;
470    ContinuousUniform u_;
471  };
472
473  /**
474     \brief Generator of random numbers from an exponential
475     distribution.
476     
477     The distribution function is \f$ f(x) = \frac{1}{m}\exp(-x/a)
478     \f$ for \f$ x \f$ with the expectation value \f$ m \f$ and
479     variance \f$ m^2 \f$
480  */
481  class Exponential : public Continuous
482  {
483  public:
484    ///
485    /// @brief Constructor
486    ///
487    /// @param m is the expectation value of the distribution.
488    ///
489    Exponential(const double m=1);
490
491    ///
492    /// @return A random number from exponential distribution.
493    ///
494    double operator()(void) const;
495
496    ///
497    /// @return A random number from exponential distribution, with
498    /// expectation value \a m
499    ///
500    /// @note This operator ignores parameters given in constructor.
501    ///
502    double operator()(const double m) const;
503
504  private:
505    double m_;
506  };
507
508  /**
509     @brief Gaussian distribution
510     
511     Class for generating a random number from a Gaussian distribution
512     between zero and unity. Utilizes the Box-Muller algorithm, which
513     needs two calls to random generator.
514     
515     Distribution function \f$ f(x) =
516     \frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2})
517     \f$ \n
518     Expectation value: \f$ \mu \f$ \n
519     Variance: \f$ \sigma^2 \f$
520  */
521  class Gaussian : public Continuous
522  {
523  public:
524    ///
525    /// @brief Constructor
526    ///
527    /// @param s is the standard deviation \f$ \sigma \f$ of distribution
528    /// @param m is the expectation value \f$ \mu \f$ of the distribution
529    ///
530    Gaussian(const double s=1, const double m=0);
531
532    ///
533    /// @return A random Gaussian number
534    ///
535    double operator()(void) const;
536
537    ///
538    /// @return A random Gaussian number with standard deviation \a s
539    /// and expectation value 0.
540    ///
541    /// @note this operator ignores parameters given in Constructor
542    ///
543    double operator()(const double s) const;
544
545    ///
546    /// @return A random Gaussian number with standard deviation \a s
547    /// and expectation value \a m.
548    ///
549    /// @note this operator ignores parameters given in Constructor
550    ///
551    double operator()(const double s, const double m) const;
552
553  private:
554    double m_;
555    double s_;
556  };
557
558  /**
559     \brief Convenience function to shuffle a range with singleton RNG.
560
561     Wrapper around std::random_shuffle using DiscreteUniform as
562     random generator and thereby using the underlying RNG class,
563     which is singleton.
564   */
565  template<typename T>
566  void random_shuffle(T first, T last)
567  {
568    DiscreteUniform rnd;
569    std::random_shuffle(first, last, rnd);
570  }
571
572}}} // of namespace random, yat, and theplu
573
574#endif
Note: See TracBrowser for help on using the repository browser.