1 | // $Id: Cox.cc 4198 2022-08-19 06:26:14Z peter $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) 2022 Peter Johansson |
---|
5 | |
---|
6 | This file is part of the yat library, https://dev.thep.lu.se/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 3 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with yat. If not, see <https://www.gnu.org/licenses/>. |
---|
20 | */ |
---|
21 | |
---|
22 | #include <config.h> |
---|
23 | |
---|
24 | #include "Cox.h" |
---|
25 | |
---|
26 | #include "detail/Cox.h" |
---|
27 | |
---|
28 | #include <yat/utility/VectorBase.h> |
---|
29 | |
---|
30 | #include <gsl/gsl_cdf.h> |
---|
31 | |
---|
32 | #include <boost/math/tools/roots.hpp> |
---|
33 | |
---|
34 | #include <algorithm> |
---|
35 | #include <memory> |
---|
36 | |
---|
37 | namespace theplu { |
---|
38 | namespace yat { |
---|
39 | namespace regression { |
---|
40 | |
---|
41 | class Cox::Impl : public cox::Implementation<double> |
---|
42 | { |
---|
43 | public: |
---|
44 | using cox::Implementation<double>::add; |
---|
45 | void add(const yat::utility::VectorBase& x, |
---|
46 | const yat::utility::VectorBase& time, |
---|
47 | const std::vector<char>& event) |
---|
48 | { |
---|
49 | assert(x.size() == time.size()); |
---|
50 | assert(x.size() == event.size()); |
---|
51 | for (size_t i=0; i<x.size(); ++i) |
---|
52 | add(x(i), time(i), event[i]); |
---|
53 | } |
---|
54 | |
---|
55 | double b(void) const { return beta_ ; } |
---|
56 | double hazard_ratio(void) const |
---|
57 | { return exp(beta_); } |
---|
58 | |
---|
59 | double hazard_ratio_lower_CI(double alpha) const |
---|
60 | { return exp(beta_ - hazard_ratio_CI(alpha)); } |
---|
61 | |
---|
62 | double hazard_ratio_upper_CI(double alpha) const |
---|
63 | { return exp(beta_ + hazard_ratio_CI(alpha)); } |
---|
64 | |
---|
65 | double p(void) const |
---|
66 | { return 2 * gsl_cdf_ugaussian_Q(std::abs(z())); } |
---|
67 | |
---|
68 | void train(void); |
---|
69 | |
---|
70 | double z(void) const { return beta_ / beta_std_error_; } |
---|
71 | |
---|
72 | private: |
---|
73 | double hazard_ratio_CI(double alpha) const |
---|
74 | { |
---|
75 | double z = gsl_cdf_ugaussian_Qinv(0.5 * (1.0 - alpha)); |
---|
76 | return z * beta_std_error_; |
---|
77 | } |
---|
78 | double beta_; |
---|
79 | double beta_std_error_; |
---|
80 | |
---|
81 | class logL |
---|
82 | { |
---|
83 | public: |
---|
84 | logL(const std::vector<TimePoint>& times); |
---|
85 | std::pair<double, double> operator()(double beta) const; |
---|
86 | |
---|
87 | double hessian(double beta) const; |
---|
88 | private: |
---|
89 | const std::vector<TimePoint>& times_; |
---|
90 | }; |
---|
91 | }; |
---|
92 | |
---|
93 | |
---|
94 | void Cox::Impl::train(void) |
---|
95 | { |
---|
96 | if (data_.empty()) |
---|
97 | return; |
---|
98 | beta_ = 0; |
---|
99 | |
---|
100 | prepare_times(); |
---|
101 | logL func(times_); |
---|
102 | using boost::math::tools::newton_raphson_iterate; |
---|
103 | beta_ = newton_raphson_iterate(func, beta_, -1e42, 1e42, 30); |
---|
104 | if (std::isnan(beta_)) |
---|
105 | throw std::runtime_error("beta is NaN"); |
---|
106 | // Calculate 2nd deriviate at beta_; |
---|
107 | double hessian = func.hessian(beta_); |
---|
108 | beta_std_error_ = 1.0 / std::sqrt(hessian); |
---|
109 | } |
---|
110 | |
---|
111 | |
---|
112 | Cox::Impl::logL::logL(const std::vector<TimePoint>& times) |
---|
113 | : times_(times) |
---|
114 | { |
---|
115 | } |
---|
116 | |
---|
117 | |
---|
118 | std::pair<double, double> Cox::Impl::logL::operator()(double beta) const |
---|
119 | { |
---|
120 | // Using Efron's method: |
---|
121 | // |
---|
122 | // sort data wrt time and denote unique time t_i such that t_i < |
---|
123 | // t_j iff i < j |
---|
124 | // Let denote H_j the indices of events at time t_j, i.e., |
---|
125 | // Y_i = t_j and event_i = true; n_j = |H_j| |
---|
126 | // |
---|
127 | // log partial likelihood |
---|
128 | // logL = |
---|
129 | // sum_j (sum_i x_i*beta - sum_k log{sum_i theta_i - k/n_j sum_i theta_i}) |
---|
130 | // where j runs over all unique times |
---|
131 | // i runs over all events in H_j |
---|
132 | // k runs over all events in H_j |
---|
133 | // 1st i sum runs : Y_i >= t_j |
---|
134 | // 2nd i sum runs over H_j |
---|
135 | // |
---|
136 | // and the derivative is |
---|
137 | // deriv = |
---|
138 | // sum_j (sum_i x_i - sum_k {[sum_i theta_i*x_i - k/n_j sum_i theta_i*x_i] / [sum_i theta_i - k/n_j sum_i theta_i]}) |
---|
139 | // 1st i sum runs : Y_i >= t_j |
---|
140 | // 2nd i sum runs over H_j |
---|
141 | // 3rd i sum runs : Y_i >= t_j |
---|
142 | // 4th i sum runs over H_j |
---|
143 | |
---|
144 | |
---|
145 | /* |
---|
146 | We handle tied ties using Efron's method. Let denote H_j the |
---|
147 | indices of events at time t_j |
---|
148 | |
---|
149 | logL = |
---|
150 | \sum_j (sum_i(theta_i) - \sum_k(log(sum_i(theta_i) - k/m_j sum_i(theta_i)) |
---|
151 | |
---|
152 | where theta_i = beta * x_i |
---|
153 | where j runs over all unique time points |
---|
154 | 1st i runs over H_j, i.e., all events at time t_j. |
---|
155 | k runs over H_j |
---|
156 | 2nd i runs over all i: Y_i > t_j |
---|
157 | 3rd i runs over H_j |
---|
158 | */ |
---|
159 | |
---|
160 | double logL = 0; |
---|
161 | double deriv = 0; |
---|
162 | |
---|
163 | double theta_Q = 0; |
---|
164 | double thetaX_Q = 0; |
---|
165 | for (auto time = times_.rbegin(); time!=times_.rend(); ++time) { |
---|
166 | double sum_event_theta = 0; |
---|
167 | double sum_event_thetaX = 0; |
---|
168 | for (auto it = time->events_begin(); it!=time->events_end(); ++it) { |
---|
169 | double theta = it->theta(beta); |
---|
170 | sum_event_theta += theta; |
---|
171 | sum_event_thetaX += theta * it->x; |
---|
172 | } |
---|
173 | theta_Q += sum_event_theta; |
---|
174 | thetaX_Q += sum_event_thetaX; |
---|
175 | |
---|
176 | for (auto it = time->censored_begin(); it!=time->censored_end(); ++it) { |
---|
177 | double theta = it->theta(beta); |
---|
178 | theta_Q += theta; |
---|
179 | thetaX_Q += theta * it->x; |
---|
180 | } |
---|
181 | |
---|
182 | |
---|
183 | // loop over events at time point t |
---|
184 | for (auto it = time->events_begin(); it!=time->events_end(); ++it) { |
---|
185 | const size_t k = it - time->events_begin(); |
---|
186 | double r = static_cast<double>(k) / time->size(); |
---|
187 | |
---|
188 | logL += it->x * beta; |
---|
189 | assert(theta_Q > 0.0); |
---|
190 | assert(theta_Q > r * sum_event_theta); |
---|
191 | logL -= std::log(theta_Q - r * sum_event_theta); |
---|
192 | |
---|
193 | deriv += it->x; |
---|
194 | deriv -= (thetaX_Q - r * sum_event_thetaX) / |
---|
195 | (theta_Q - r * sum_event_theta); |
---|
196 | } |
---|
197 | |
---|
198 | } |
---|
199 | |
---|
200 | assert(!std::isnan(logL)); |
---|
201 | assert(!std::isnan(deriv)); |
---|
202 | return std::make_pair(-logL, -deriv); |
---|
203 | } |
---|
204 | |
---|
205 | |
---|
206 | double Cox::Impl::logL::hessian(double beta) const |
---|
207 | { |
---|
208 | // The second derivative of the log-likelihood evaluated at the |
---|
209 | // maximum likelihood estimates (MLE) is the observed Fisher |
---|
210 | // information |
---|
211 | |
---|
212 | double hessian = 0; |
---|
213 | |
---|
214 | double sum_theta = 0; |
---|
215 | double sum_thetaX = 0; |
---|
216 | double sum_thetaXX = 0; |
---|
217 | for (const auto& t : times_) { |
---|
218 | for (auto it = t.begin; it!=t.end; ++it) { |
---|
219 | double theta = it->theta(beta); |
---|
220 | sum_theta += theta; |
---|
221 | sum_thetaX += theta * it->x; |
---|
222 | sum_thetaXX += theta * it->x * it->x; |
---|
223 | } |
---|
224 | } |
---|
225 | |
---|
226 | // loop over unique time points |
---|
227 | for (const auto& t : times_) { |
---|
228 | |
---|
229 | // sum over all events in H_j |
---|
230 | double part_sum_theta = 0; |
---|
231 | double part_sum_thetaX = 0; |
---|
232 | double part_sum_thetaXX = 0; |
---|
233 | for (auto it = t.events_begin(); it!=t.events_end(); ++it) { |
---|
234 | double theta = it->theta(beta); |
---|
235 | part_sum_theta += theta; |
---|
236 | part_sum_thetaX += theta * it->x; |
---|
237 | part_sum_thetaXX += theta * it->x * it->x; |
---|
238 | } |
---|
239 | |
---|
240 | // loop over events at time point t |
---|
241 | for (auto it = t.events_begin(); it!=t.events_end(); ++it) { |
---|
242 | const size_t k = it - t.events_begin(); |
---|
243 | double r = static_cast<double>(k) / t.size(); |
---|
244 | |
---|
245 | double S_thetaXX = sum_thetaXX - r * part_sum_thetaXX; |
---|
246 | double S_thetaX = sum_thetaX - r * part_sum_thetaX; |
---|
247 | double S_theta = sum_theta - r * part_sum_theta; |
---|
248 | hessian += S_thetaXX/S_theta; |
---|
249 | hessian -= std::pow(S_thetaX/S_theta, 2); |
---|
250 | } |
---|
251 | |
---|
252 | // update the cumulative sums |
---|
253 | for (auto it = t.begin; it!=t.end; ++it) { |
---|
254 | double theta = it->theta(beta); |
---|
255 | sum_theta -= theta; |
---|
256 | sum_thetaX -= theta * it->x; |
---|
257 | sum_thetaXX -= theta * it->x * it->x; |
---|
258 | } |
---|
259 | } |
---|
260 | return hessian; |
---|
261 | } |
---|
262 | |
---|
263 | |
---|
264 | // class Cox |
---|
265 | |
---|
266 | Cox::Cox(void) |
---|
267 | : pimpl_(new Impl) |
---|
268 | { |
---|
269 | } |
---|
270 | |
---|
271 | |
---|
272 | Cox::Cox(const Cox& other) |
---|
273 | : pimpl_(new Impl(*other.pimpl_)) |
---|
274 | { |
---|
275 | } |
---|
276 | |
---|
277 | |
---|
278 | Cox::Cox(Cox&& other) |
---|
279 | { |
---|
280 | std::swap(pimpl_, other.pimpl_); |
---|
281 | } |
---|
282 | |
---|
283 | |
---|
284 | Cox::~Cox(void) |
---|
285 | { |
---|
286 | } |
---|
287 | |
---|
288 | |
---|
289 | Cox& Cox::operator=(const Cox& other) |
---|
290 | { |
---|
291 | assert(other.pimpl_); |
---|
292 | pimpl_.reset(new Impl(*other.pimpl_)); |
---|
293 | return *this; |
---|
294 | } |
---|
295 | |
---|
296 | |
---|
297 | Cox& Cox::operator=(Cox&& other) |
---|
298 | { |
---|
299 | std::swap(pimpl_, other.pimpl_); |
---|
300 | return *this; |
---|
301 | } |
---|
302 | |
---|
303 | |
---|
304 | void Cox::Cox::add(double x, double time, bool event) |
---|
305 | { |
---|
306 | pimpl_->add(x, time, event); |
---|
307 | } |
---|
308 | |
---|
309 | |
---|
310 | void Cox::add(const yat::utility::VectorBase& x, |
---|
311 | const yat::utility::VectorBase& time, |
---|
312 | const std::vector<char>& event) |
---|
313 | { |
---|
314 | pimpl_->add(x, time, event); |
---|
315 | } |
---|
316 | |
---|
317 | |
---|
318 | double Cox::b(void) const |
---|
319 | { |
---|
320 | return pimpl_->b(); |
---|
321 | } |
---|
322 | |
---|
323 | |
---|
324 | void Cox::clear(void) |
---|
325 | { |
---|
326 | pimpl_->clear(); |
---|
327 | } |
---|
328 | |
---|
329 | |
---|
330 | double Cox::hazard_ratio(void) const |
---|
331 | { |
---|
332 | return pimpl_->hazard_ratio(); |
---|
333 | } |
---|
334 | |
---|
335 | |
---|
336 | double Cox::hazard_ratio_lower_CI(double alpha) const |
---|
337 | { |
---|
338 | return pimpl_->hazard_ratio_lower_CI(alpha); |
---|
339 | } |
---|
340 | |
---|
341 | |
---|
342 | double Cox::hazard_ratio_upper_CI(double alpha) const |
---|
343 | { |
---|
344 | return pimpl_->hazard_ratio_upper_CI(alpha); |
---|
345 | } |
---|
346 | |
---|
347 | |
---|
348 | double Cox::p(void) const |
---|
349 | { |
---|
350 | return pimpl_->p(); |
---|
351 | } |
---|
352 | |
---|
353 | |
---|
354 | void Cox::train(void) |
---|
355 | { |
---|
356 | pimpl_->train(); |
---|
357 | } |
---|
358 | |
---|
359 | |
---|
360 | double Cox::z(void) const |
---|
361 | { |
---|
362 | return pimpl_->z(); |
---|
363 | } |
---|
364 | |
---|
365 | }}} |
---|