source: trunk/yat/regression/Local.cc @ 1120

Last change on this file since 1120 was 1120, checked in by Peter, 16 years ago

vector is now Vector

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 4.3 KB
Line 
1// $Id: Local.cc 1120 2008-02-21 23:18:41Z peter $
2
3/*
4  Copyright (C) 2004 Peter Johansson
5  Copyright (C) 2005, 2006, 2007 Jari Häkkinen, Peter Johansson
6
7  This file is part of the yat library, http://trac.thep.lu.se/yat
8
9  The yat library is free software; you can redistribute it and/or
10  modify it under the terms of the GNU General Public License as
11  published by the Free Software Foundation; either version 2 of the
12  License, or (at your option) any later version.
13
14  The yat library is distributed in the hope that it will be useful,
15  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17  General Public License for more details.
18
19  You should have received a copy of the GNU General Public License
20  along with this program; if not, write to the Free Software
21  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
22  02111-1307, USA.
23*/
24
25#include "Local.h"
26#include "Kernel.h"
27#include "OneDimensionalWeighted.h"
28#include "yat/utility/Vector.h"
29#include "yat/utility/VectorView.h"
30
31#include <algorithm>
32#include <cassert>
33#include <iostream>
34#include <sstream>
35#include <stdexcept>
36
37namespace theplu {
38namespace yat {
39namespace regression {
40
41  Local::Local(OneDimensionalWeighted& r, Kernel& k)
42    : kernel_(&k), regressor_(&r)
43  {
44  }
45
46  Local::~Local(void)
47  {
48  }
49
50  void Local::add(const double x, const double y)
51  {
52    data_.push_back(std::make_pair(x,y));
53  }
54
55  void Local::fit(const size_t step_size, const size_t nof_points)
56  {
57    if (step_size==0){
58      std::stringstream ss;
59      ss << "yat::regression::local: step_size must be larger than zero.";
60      throw std::runtime_error(ss.str());
61    }
62    if (nof_points<3){
63      std::stringstream ss;
64      ss << "yat::regression::local: too few data points. "
65         << "At least 3 data points are needed to perform fitting.";
66      throw std::runtime_error(ss.str());
67    }
68
69    size_t nof_fits=data_.size()/step_size;
70    x_ = utility::Vector(nof_fits);
71    y_predicted_ = utility::Vector(x_.size());
72    y_err_ = utility::Vector(x_.size());
73    sort(data_.begin(), data_.end());
74
75    // coying data to 2 utility vectors ONCE to use views from
76    utility::Vector x(data_.size());
77    utility::Vector y(data_.size());
78    for (size_t j=0; j<x.size(); j++){
79      x(j)=data_[j].first;
80      y(j)=data_[j].second;
81    }
82
83    // looping over regression points and perform local regression
84    for (size_t i=0; i<nof_fits; i++) {
85      size_t max_index = static_cast<size_t>( (i+0.5)*step_size );
86      size_t min_index;
87      double width; // distance from middle of windo to border of window
88      double x_mid; // middle of window
89      // right border case
90      if (max_index > data_.size()-1){
91        min_index = max_index - nof_points + 1;
92        max_index = data_.size()-1;
93        width = ( (( x(max_index)-x(0) )*(nof_points-1)) / 
94                  ( 2*(max_index-min_index)) );
95        x_mid = x(min_index)+width;
96      }
97      // normal middle case
98      else if (max_index > nof_points-1){
99        min_index = max_index - nof_points + 1;
100        width = (x(max_index)-x(min_index))/2;
101        x_mid = x(min_index)+width;
102      }
103      // left border case
104      else {
105        min_index = 0;
106        width = ( (( x(max_index)-x(0) )*(nof_points-1)) / 
107                  ( 2*(max_index-min_index)) );
108        x_mid = x(max_index)-width;
109      }
110      assert(min_index<data_.size());
111      assert(max_index<data_.size());
112                               
113      utility::VectorView x_local(x, min_index, max_index-min_index+1);
114      utility::VectorView y_local(y, min_index, max_index-min_index+1);
115
116      // calculating weights
117      utility::Vector w(max_index-min_index+1);
118      for (size_t j=0; j<w.size(); j++)
119        w(j) = (*kernel_)( (x_local(j)- x_mid)/width );
120     
121      // fitting the regressor locally
122      regressor_->fit(x_local,y_local,w);
123      assert(i<y_predicted_.size());
124      assert(i<y_err_.size());
125      y_predicted_(i) = regressor_->predict(x(i*step_size));
126      y_err_(i) = sqrt(regressor_->standard_error2(x(i*step_size)));
127    }
128  }
129
130  const utility::Vector& Local::x(void) const
131  {
132    return x_;
133  }
134
135  const utility::Vector& Local::y_predicted(void) const
136  {
137    return y_predicted_;
138  }
139
140  const utility::Vector& Local::y_err(void) const
141  {
142    return y_err_;
143  }
144
145  std::ostream& operator<<(std::ostream& os, const Local& r)
146  {
147    os << "# column 1: x\n"
148      << "# column 2: y\n"
149      << "# column 3: y_err\n";
150    for (size_t i=0; i<r.x().size(); i++) {
151      os << r.x()(i) << "\t" 
152         << r.y_predicted()(i) << "\t"
153         << r.y_err()(i) << "\n";
154    }   
155
156    return os;
157  }
158
159}}} // of namespaces regression, yat, and theplu
Note: See TracBrowser for help on using the repository browser.