1 | // $Id: OneDimensional.cc 1487 2008-09-10 08:41:36Z jari $ |
---|

2 | |
---|

3 | /* |
---|

4 | Copyright (C) 2005 Peter Johansson |
---|

5 | Copyright (C) 2006, 2007 Jari Häkkinen, Peter Johansson |
---|

6 | Copyright (C) 2008 Peter Johansson |
---|

7 | |
---|

8 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|

9 | |
---|

10 | The yat library is free software; you can redistribute it and/or |
---|

11 | modify it under the terms of the GNU General Public License as |
---|

12 | published by the Free Software Foundation; either version 3 of the |
---|

13 | License, or (at your option) any later version. |
---|

14 | |
---|

15 | The yat library is distributed in the hope that it will be useful, |
---|

16 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|

17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|

18 | General Public License for more details. |
---|

19 | |
---|

20 | You should have received a copy of the GNU General Public License |
---|

21 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|

22 | */ |
---|

23 | |
---|

24 | #include "OneDimensional.h" |
---|

25 | |
---|

26 | namespace theplu { |
---|

27 | namespace yat { |
---|

28 | namespace regression { |
---|

29 | |
---|

30 | OneDimensional::OneDimensional(void) |
---|

31 | : chisq_(0) |
---|

32 | { |
---|

33 | } |
---|

34 | |
---|

35 | OneDimensional::~OneDimensional(void) |
---|

36 | { |
---|

37 | } |
---|

38 | |
---|

39 | |
---|

40 | double OneDimensional::chisq(void) const |
---|

41 | { |
---|

42 | return chisq_; |
---|

43 | } |
---|

44 | |
---|

45 | |
---|

46 | double OneDimensional::prediction_error2(const double x) const |
---|

47 | { |
---|

48 | return s2()+standard_error2(x); |
---|

49 | } |
---|

50 | |
---|

51 | |
---|

52 | std::ostream& OneDimensional::print(std::ostream& os, const double min, |
---|

53 | double max, const unsigned int n) const |
---|

54 | { |
---|

55 | double dx; |
---|

56 | if (n>1) |
---|

57 | dx=(max-min)/(n-1); |
---|

58 | else{ |
---|

59 | dx=1.0; |
---|

60 | max=min; |
---|

61 | } |
---|

62 | |
---|

63 | for ( double x=min; x<=max; x+=dx) { |
---|

64 | double y = predict(x); |
---|

65 | double y_err = sqrt(prediction_error2(x)); |
---|

66 | os << x << "\t" << y << "\t" << y_err << "\n"; |
---|

67 | } |
---|

68 | return os; |
---|

69 | } |
---|

70 | |
---|

71 | |
---|

72 | double OneDimensional::r2(void) const |
---|

73 | { |
---|

74 | return 1 - chisq()/ap_.y_averager().sum_xx_centered(); |
---|

75 | } |
---|

76 | |
---|

77 | double OneDimensional::variance(void) const |
---|

78 | { |
---|

79 | return ap_.y_averager().variance(); |
---|

80 | } |
---|

81 | |
---|

82 | }}} // of namespaces regression, yat, and theplu |
---|