source: trunk/yat/regression/PolynomialWeighted.h @ 718

Last change on this file since 718 was 718, checked in by Jari Häkkinen, 17 years ago

Addresses #170.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 2.4 KB
Line 
1#ifndef _theplu_yat_regression_polynomialweighted_
2#define _theplu_yat_regression_polynomialweighted_
3
4// $Id: PolynomialWeighted.h 718 2006-12-26 09:56:26Z jari $
5
6/*
7  Copyright (C) The authors contributing to this file.
8
9  This file is part of the yat library, http://lev.thep.lu.se/trac/yat
10
11  The yat library is free software; you can redistribute it and/or
12  modify it under the terms of the GNU General Public License as
13  published by the Free Software Foundation; either version 2 of the
14  License, or (at your option) any later version.
15
16  The yat library is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  02111-1307, USA.
25*/
26
27#include "OneDimensionalWeighted.h"
28#include "MultiDimensionalWeighted.h"
29#include "yat/utility/vector.h"
30
31#include <cassert>
32
33namespace theplu {
34namespace yat {
35namespace regression {
36
37  ///
38  /// @todo document
39  ///
40  class PolynomialWeighted : public OneDimensionalWeighted
41  {
42  public:
43
44    ///
45    /// @param power degree of polynomial model
46    ///
47    PolynomialWeighted(size_t power);
48
49    ///
50    /// @brief Destructor
51    ///
52    ~PolynomialWeighted(void);
53
54    ///
55    /// This function computes the best-fit given the polynomial model
56    /// model by minimizing \f$ \sum{w_i(\hat{y_i}-y_i)^2} \f$, where
57    /// \f$ \hat{y} \f$ is the fitted value. The weight \f$ w_i \f$
58    /// should be proportional to the inverse of the variance for \f$
59    /// y_i \f$
60    ///
61    void fit(const utility::vector& x, const utility::vector& y,
62             const utility::vector& w);
63
64    ///
65    /// @return parameters for polynomial model
66    ///
67    utility::vector fit_parameters(void) { return md_.fit_parameters(); }
68
69    ///
70    /// @brief Mean Squared Error
71    ///
72    double mse(void) const;
73
74    ///
75    /// function predicting in one point.
76    ///
77    double predict(const double x) const;
78
79    ///
80    /// @return expected prediction error for a new data point in @a x
81    /// with weight @a w
82    ///
83    double prediction_error(const double x, const double w=1) const;
84
85    ///
86    /// @return error of model value in @a x
87    ///
88    double standard_error(const double x) const;
89
90  private:
91    MultiDimensionalWeighted md_;
92    double mse_;
93    size_t power_;
94
95  };
96
97}}} // of namespaces regression, yat, and theplu
98
99#endif
Note: See TracBrowser for help on using the repository browser.