source: trunk/yat/statistics/AveragerWeighted.h @ 683

Last change on this file since 683 was 683, checked in by Jari Häkkinen, 16 years ago

Addresses #153. Clean up of code.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 7.2 KB
Line 
1#ifndef _theplu_yat_statistics_averagerweighted_
2#define _theplu_yat_statistics_averagerweighted_
3
4// $Id: AveragerWeighted.h 683 2006-10-11 22:20:36Z jari $
5
6/*
7  Copyright (C) The authors contributing to this file.
8
9  This file is part of the yat library, http://lev.thep.lu.se/trac/yat
10
11  The yat library is free software; you can redistribute it and/or
12  modify it under the terms of the GNU General Public License as
13  published by the Free Software Foundation; either version 2 of the
14  License, or (at your option) any later version.
15
16  The yat library is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  02111-1307, USA.
25*/
26
27#include "Averager.h"
28
29#include <cmath>
30
31namespace theplu{
32namespace yat{
33namespace statistics{
34
35  ///
36  /// @brief Class to calulate averages with weights.
37  ///
38  /// There are several different reasons why a statistical analysis
39  /// needs to adjust for weighting. In the litterature reasons are
40  /// mainly divided into two kinds of weights - probablity weights
41  /// and analytical weights. 1) Analytical weights are appropriate
42  /// for scientific experiments where some measurements are known to
43  /// be more precise than others. The larger weight a measurement has
44  /// the more precise is is assumed to be, or more formally the
45  /// weight is proportional to the reciprocal variance
46  /// \f$ \sigma_i^2 = \frac{\sigma^2}{w_i} \f$. 2) Probability weights
47  /// are used for the situation when calculating averages over a
48  /// distribution \f$ f \f$ , but sampling from a distribution \f$ f'
49  /// \f$. Compensating for this discrepancy averages of observables
50  /// are taken to be \f$ \sum \frac{f}{f'}X \f$ For further discussion:
51  /// <a href="Statistics/index.html">Weighted Statistics document</a><br>
52  ///
53  /// If nothing else stated, each function fulfills the
54  /// following:<br> <ul><li>Setting a weight to zero corresponds to
55  /// removing the data point from the dataset.</li><li> Setting all
56  /// weights to unity, the yields the same result as from
57  /// corresponding function in Averager.</li><li> Rescaling weights
58  /// does not change the performance of the object.</li></ul>
59  ///
60  /// @see Averager AveragerPair AveragerPairWeighted
61  ///
62  class AveragerWeighted
63  {
64  public:
65
66    ///
67    /// Default constructor
68    ///
69    inline AveragerWeighted(void)
70      : w_(Averager()), wx_(Averager()), wwx_(0), wxx_(0) {}
71
72    ///
73    /// Copy constructor
74    ///
75    inline AveragerWeighted(const AveragerWeighted& a)
76      : w_(Averager(a.sum_w(),a.sum_ww(),1)),
77        wx_(Averager(a.sum_wx(),a.sum_wwxx(),1)), wwx_(a.sum_wwx()),
78        wxx_(a.sum_wxx()) {}
79
80    ///
81    /// adding a data point d, with weight w (default is 1)
82    ///
83    inline void add(const double d,const double w=1)
84    { if(w==0) return; w_.add(w); wx_.add(w*d); wwx_+=w*w*d; wxx_+=w*d*d; }
85
86    ///
87    /// Adding each value in an array \a x and corresponding value in
88    /// weight array \a w.
89    ///
90    /// The requirements for the types T1 and T2 of the arrays \a x
91    /// and \a w are: operator[] returning an element and function
92    /// size() returning the number of elements.
93    ///
94    template <typename T1, typename T2>
95    void add_values(const T1& x, const T2& w);
96
97    ///
98    /// Calculating the weighted mean
99    ///
100    /// @return \f$ \frac{\sum w_ix_i}{\sum w_i} \f$
101    ///
102    inline double mean(void) const { return sum_w() ? 
103                                       sum_wx()/sum_w() : 0; }
104 
105    ///
106    /// @brief Weighted version of number of data points. If all
107    /// weights are equal, the unweighted version is identical to the
108    /// non-weighted version. Adding a data point with zero weight
109    /// does not change n(). The calculated value is always smaller
110    /// than the actual number of data points added to object.
111    ///
112    /// @return \f$ \frac{\left(\sum w_i\right)^2}{\sum w_i^2} \f$
113    ///
114    inline double n(void) const { return sum_w()*sum_w()/sum_ww(); }
115
116    ///
117    /// rescale object, i.e. each data point is rescaled
118    /// \f$ x = a * x \f$
119    ///
120    inline void rescale(double a) { wx_.rescale(a); wwx_*=a; wxx_*=a*a; }
121
122    ///
123    /// resets everything to zero
124    ///
125    inline void reset(void) { wx_.reset(); w_.reset(); wwx_=0; wxx_=0; }
126
127    ///
128    /// The standard deviation is defined as the square root of the
129    /// variance().
130    ///
131    /// @return The standard deviation, root of the variance().
132    ///
133    inline double std(void) const { return sqrt(variance()); }
134
135    ///
136    /// Calculates standard deviation of the mean(). Variance from the
137    /// weights are here neglected. This is true when the weight is
138    /// known before the measurement. In case this is not a good
139    /// approximation, use bootstrapping to estimate the error.
140    ///
141    /// @return \f$ \frac{\sum w^2}{\left(\sum w\right)^3}\sum w(x-m)^2 \f$
142    /// where \f$ m \f$ is the mean()
143    ///
144    inline double standard_error(void)  const 
145    { return sqrt(sum_ww()/(sum_w()*sum_w()*sum_w()) *
146                  sum_xx_centered()); }
147
148    ///
149    /// Calculating the sum of weights 
150    ///
151    /// @return \f$ \sum w_i \f$
152    ///
153    inline double sum_w(void) const 
154    { return w_.sum_x(); }
155
156    ///
157    /// @return \f$ \sum w_i^2 \f$
158    ///
159    inline double sum_ww(void)  const 
160    { return w_.sum_xx(); }
161
162    ///
163    /// \f$ \sum w_ix_i \f$
164    ///
165    /// @return weighted sum of x
166    ///
167    inline double sum_wx(void)  const 
168    { return wx_.sum_x(); }
169
170    ///
171    /// @return \f$ \sum_i w_i (x_i-m)^2\f$
172    ///
173    inline double sum_xx_centered(void) const
174    { return sum_wxx() - mean()*mean()*sum_w(); }
175
176    ///
177    /// The variance is calculated as \f$ \frac{\sum w_i (x_i - m)^2
178    /// }{\sum w_i} \f$, where \a m is the known mean.
179    ///
180    /// @return Variance when the mean is known to be \a m.
181    ///
182    inline double variance(const double m) const
183    { return (sum_wxx()-2*m*sum_wx())/sum_w()+m*m; }
184
185    ///
186    /// The variance is calculated as \f$ \frac{\sum w_i (x_i - m)^2
187    /// }{\sum w_i} \f$, where \a m is the mean(). Here the weight are
188    /// interpreted as probability weights. For analytical weights the
189    /// variance has no meaning as each data point has its own
190    /// variance.
191    ///
192    /// @return The variance.
193    ///
194    inline double variance(void) const
195    { return sum_xx_centered()/sum_w(); }
196
197
198  private:
199    ///
200    ///  @return \f$ \sum w_i^2x_i^2 \f$
201    ///
202    inline double sum_wwxx(void)  const 
203    { return wx_.sum_xx(); }
204   
205    ///
206    ///  @return \f$ \sum w_i^2x_i \f$
207    ///
208    inline double sum_wwx(void) const 
209    { return wwx_; }
210
211    ///
212    ///  @return \f$ \sum w_i x_i^2 \f$
213    ///
214    inline double sum_wxx(void) const { return wxx_; }
215
216    ///
217    /// operator to add a AveragerWeighted
218    ///
219    AveragerWeighted operator+=(const AveragerWeighted&);
220   
221    Averager w_;
222    Averager wx_;
223    double wwx_;
224    double wxx_;
225   
226    inline Averager wx(void) const {return wx_;}
227    inline Averager w(void) const {return w_;}
228
229
230  };
231
232  // Template implementations
233  template <typename T1, typename T2>
234  void AveragerWeighted::add_values(const T1& x, const T2& w)
235  {
236    assert(x.size()==w.size());
237    for (size_t i=0; i<x.size(); i++) 
238      add(x[i],w[i]);
239  }
240
241///
242/// The AveragerWeighted output operator
243///
244///std::ostream& operator<<(std::ostream& s,const AveragerWeighted&);
245
246}}} // of namespace statistics, yat, and theplu
247
248#endif
Note: See TracBrowser for help on using the repository browser.