# source:trunk/yat/statistics/EuclideanDistance.h@1115

Last change on this file since 1115 was 1115, checked in by Markus Ringnér, 15 years ago

Fixes #254 and #295

• Property svn:eol-style set to native
• Property svn:keywords set to Id
File size: 2.9 KB
Line
1#ifndef theplu_yat_statistics_euclidean_distance_h
2#define theplu_yat_statistics_euclidean_distance_h
3
4// $Id: EuclideanDistance.h 1115 2008-02-21 19:20:59Z markus$
5
6/*
7  Copyright (C) 2007 Peter Johansson, Markus Ringnér
8  Copyright (C) 2008 Peter Johansson
9
10  This file is part of the yat library, http://trac.thep.lu.se/yat
11
12  The yat library is free software; you can redistribute it and/or
13  modify it under the terms of the GNU General Public License as
14  published by the Free Software Foundation; either version 2 of the
15  License, or (at your option) any later version.
16
17  The yat library is distributed in the hope that it will be useful,
18  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  General Public License for more details.
21
22  You should have received a copy of the GNU General Public License
23  along with this program; if not, write to the Free Software
24  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
25  02111-1307, USA.
26*/
27
28#include "AveragerPair.h"
29#include "AveragerPairWeighted.h"
30#include "yat/utility/iterator_traits.h"
31
32#include <cmath>
33
34namespace theplu {
35namespace yat {
36namespace statistics {
37
38  ///
39  /// @brief Calculates the Euclidean distance between two points
40  /// given by elements of ranges.
41  ///
42  /// This class is modelling the concept \ref concept_distance.
43  ///
44  ///
45  struct EuclideanDistance
46  {
47    /**
48       \brief Calculates the Euclidean distance between elements of
49       two ranges.
50
51       If elements of both ranges are unweighted the distance is
52       calculated as \f$\sqrt{\sum (x_i-y_i)^2 } \f$, where \f$x_i 53 \f$ and \f$y_i \f$ are elements of the first and second range,
54       respectively.
55
56       If elements of one or both of ranges have weights the distance
57       is calculated as \f$\sqrt{N \sum 58 w_{x,i}w_{y,i}(x_i-y_i)^2/\sum w_{x,i}w_{y,i}} \f$, where \f$N 59 \f$ is the number of elements in the two ranges and \f$w_x \f$
60       and \f$w_y \f$ are weights for the elements of the first and
61       the second range, respectively. If the elements of one of the
62       two ranges are unweighted, the weights for these elements are
63       set to unity.
64    */
65    template <typename Iter1, typename Iter2>
66    double operator()
67    (Iter1 beg1,Iter1 end1, Iter2 beg2) const
68    {
69      return this->distance(beg1, end1, beg2,
70                      typename utility::weighted_if_any2<Iter1,Iter2>::type());
71    }
72
73  private:
74    template <typename Iter1, typename Iter2>
75    double distance (Iter1 beg1,Iter1 end1, Iter2 beg2,
76                     utility::unweighted_iterator_tag) const
77    {
78      AveragerPair ap;
80      return sqrt(ap.sum_squared_deviation());
81    }
82
83    template <typename Iter1, typename Iter2>
84    double distance (Iter1 beg1,Iter1 end1, Iter2 beg2,
85                     utility::weighted_iterator_tag) const
86    {
87      AveragerPairWeighted ap;