1 | #ifndef theplu_yat_statistics_pearson_distance_h |
---|
2 | #define theplu_yat_statistics_pearson_distance_h |
---|
3 | |
---|
4 | // $Id: PearsonDistance.h 1487 2008-09-10 08:41:36Z jari $ |
---|
5 | |
---|
6 | /* |
---|
7 | Copyright (C) 2007 Jari Häkkinen, Peter Johansson, Markus Ringnér |
---|
8 | Copyright (C) 2008 Peter Johansson, Markus Ringnér |
---|
9 | |
---|
10 | This file is part of the yat library, http://dev.thep.lu.se/yat |
---|
11 | |
---|
12 | The yat library is free software; you can redistribute it and/or |
---|
13 | modify it under the terms of the GNU General Public License as |
---|
14 | published by the Free Software Foundation; either version 3 of the |
---|
15 | License, or (at your option) any later version. |
---|
16 | |
---|
17 | The yat library is distributed in the hope that it will be useful, |
---|
18 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
19 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
20 | General Public License for more details. |
---|
21 | |
---|
22 | You should have received a copy of the GNU General Public License |
---|
23 | along with yat. If not, see <http://www.gnu.org/licenses/>. |
---|
24 | */ |
---|
25 | |
---|
26 | #include "averager_traits.h" |
---|
27 | #include "yat/utility/iterator_traits.h" |
---|
28 | |
---|
29 | namespace theplu { |
---|
30 | namespace yat { |
---|
31 | namespace statistics { |
---|
32 | |
---|
33 | /// |
---|
34 | /// @brief Calculates the %Pearson correlation distance between two points given by elements of ranges. |
---|
35 | /// |
---|
36 | /// This class is modelling the concept \ref concept_distance. |
---|
37 | /// |
---|
38 | struct PearsonDistance |
---|
39 | { |
---|
40 | /** |
---|
41 | \brief Calculates the %Pearson correlation distance between |
---|
42 | elements of two ranges. |
---|
43 | |
---|
44 | If elements of both ranges are unweighted the distance is |
---|
45 | calculated as \f$ 1-\mbox{C}(x,y) \f$, where \f$ x \f$ and \f$ |
---|
46 | y \f$ are the two points and C is the %Pearson correlation. |
---|
47 | |
---|
48 | If elements of one or both of ranges have weights the distance |
---|
49 | is calculated as \f$ 1-[\sum w_{x,i}w_{y,i}(x_i-y_i)^2/(\sum |
---|
50 | w_{x,i}w_{y,i}(x_i-m_x)^2\sum w_{x,i}w_{y,i}(y_i-m_y)^2)] \f$, |
---|
51 | where and \f$ w_x \f$ and \f$ w_y \f$ are weights for the |
---|
52 | elements of the first and the second range, respectively, and |
---|
53 | \f$ m_x=\sum w_{x,i}w_{y,i}x_i/\sum w_{x,i}w_{y,i} \f$ and |
---|
54 | correspondingly for \f$ m_y \f$. If the elements of one of the |
---|
55 | two ranges are unweighted, the weights for these elements are |
---|
56 | set to unity. |
---|
57 | */ |
---|
58 | template <typename Iter1, typename Iter2> |
---|
59 | double operator() |
---|
60 | (Iter1 beg1,Iter1 end1, Iter2 beg2) const |
---|
61 | { |
---|
62 | typename averager_pair<Iter1, Iter2>::type ap; |
---|
63 | add(ap,beg1,end1,beg2); |
---|
64 | return 1-ap.correlation(); |
---|
65 | } |
---|
66 | }; |
---|
67 | |
---|
68 | }}} // of namespace statistics, yat, and theplu |
---|
69 | |
---|
70 | #endif |
---|