1 | // $Id: utility.cc 782 2007-03-05 21:17:31Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "utility.h" |
---|
25 | |
---|
26 | #include <gsl/gsl_randist.h> |
---|
27 | #include <gsl/gsl_statistics_double.h> |
---|
28 | |
---|
29 | namespace theplu { |
---|
30 | namespace yat { |
---|
31 | namespace statistics { |
---|
32 | |
---|
33 | double cdf_hypergeometric_P(u_int k, u_int n1, u_int n2, u_int t) |
---|
34 | { |
---|
35 | double p=0; |
---|
36 | for (u_int i=0; i<=k; i++) |
---|
37 | p+= gsl_ran_hypergeometric_pdf(i, n1, n2, t); |
---|
38 | return p; |
---|
39 | } |
---|
40 | |
---|
41 | double kurtosis(const utility::vector& v) |
---|
42 | { |
---|
43 | const gsl_vector* gvp=v.gsl_vector_p(); |
---|
44 | return gsl_stats_kurtosis(gvp->data,gvp->stride,gvp->size); |
---|
45 | } |
---|
46 | |
---|
47 | double mad(const utility::vector& vec, const bool sorted) |
---|
48 | { |
---|
49 | double m = median(vec, sorted); |
---|
50 | std::vector<double> ad; |
---|
51 | ad.reserve(vec.size()); |
---|
52 | for (size_t i = 0; i<vec.size(); ++i) |
---|
53 | ad.push_back(fabs(vec[i]-m)); |
---|
54 | std::sort(ad.begin(), ad.end()); |
---|
55 | return median(ad,true); |
---|
56 | } |
---|
57 | |
---|
58 | |
---|
59 | double median(const utility::vector& vec, const bool sorted) |
---|
60 | { |
---|
61 | if (!sorted){ |
---|
62 | utility::vector vec_copy(vec); |
---|
63 | utility::sort(vec_copy); |
---|
64 | return gsl_stats_median_from_sorted_data (vec_copy.gsl_vector_p()->data, |
---|
65 | vec_copy.gsl_vector_p()->stride, |
---|
66 | vec_copy.gsl_vector_p()->size); |
---|
67 | } |
---|
68 | return gsl_stats_median_from_sorted_data (vec.gsl_vector_p()->data, |
---|
69 | vec.gsl_vector_p()->stride, |
---|
70 | vec.gsl_vector_p()->size); |
---|
71 | } |
---|
72 | |
---|
73 | double percentile(const utility::vector& vec, const double p, |
---|
74 | const bool sorted) |
---|
75 | { |
---|
76 | if (!sorted){ |
---|
77 | utility::vector vec_c(vec); |
---|
78 | utility::sort(vec_c); |
---|
79 | return gsl_stats_quantile_from_sorted_data(vec_c.gsl_vector_p()->data, |
---|
80 | vec_c.gsl_vector_p()->stride, |
---|
81 | vec_c.gsl_vector_p()->size, |
---|
82 | p); |
---|
83 | } |
---|
84 | return gsl_stats_quantile_from_sorted_data (vec.gsl_vector_p()->data, |
---|
85 | vec.gsl_vector_p()->stride, |
---|
86 | vec.gsl_vector_p()->size, |
---|
87 | p); |
---|
88 | } |
---|
89 | |
---|
90 | double skewness(const utility::vector& v) |
---|
91 | { |
---|
92 | const gsl_vector* gvp=v.gsl_vector_p(); |
---|
93 | return gsl_stats_skew(gvp->data,gvp->stride,gvp->size); |
---|
94 | } |
---|
95 | |
---|
96 | }}} // of namespace statistics, yat, and theplu |
---|