1 | // $Id: PCA.cc 715 2006-12-22 08:42:39Z jari $ |
---|
2 | |
---|
3 | /* |
---|
4 | Copyright (C) The authors contributing to this file. |
---|
5 | |
---|
6 | This file is part of the yat library, http://lev.thep.lu.se/trac/yat |
---|
7 | |
---|
8 | The yat library is free software; you can redistribute it and/or |
---|
9 | modify it under the terms of the GNU General Public License as |
---|
10 | published by the Free Software Foundation; either version 2 of the |
---|
11 | License, or (at your option) any later version. |
---|
12 | |
---|
13 | The yat library is distributed in the hope that it will be useful, |
---|
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
---|
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
---|
16 | General Public License for more details. |
---|
17 | |
---|
18 | You should have received a copy of the GNU General Public License |
---|
19 | along with this program; if not, write to the Free Software |
---|
20 | Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
---|
21 | 02111-1307, USA. |
---|
22 | */ |
---|
23 | |
---|
24 | #include "PCA.h" |
---|
25 | #include "SVD.h" |
---|
26 | |
---|
27 | #include <iostream> |
---|
28 | #include <cmath> |
---|
29 | #include <memory> |
---|
30 | |
---|
31 | namespace theplu { |
---|
32 | namespace yat { |
---|
33 | namespace utility { |
---|
34 | |
---|
35 | |
---|
36 | PCA::PCA(const utility::matrix& A) |
---|
37 | : A_(A), process_(false), explained_calc_(false) |
---|
38 | { |
---|
39 | } |
---|
40 | |
---|
41 | |
---|
42 | utility::vector PCA::get_eigenvector(size_t i) const |
---|
43 | { |
---|
44 | return utility::vector(eigenvectors_,i); |
---|
45 | } |
---|
46 | |
---|
47 | |
---|
48 | double PCA::get_eigenvalue(size_t i) const |
---|
49 | { |
---|
50 | return eigenvalues_[i]; |
---|
51 | } |
---|
52 | |
---|
53 | |
---|
54 | void PCA::process(void) |
---|
55 | { |
---|
56 | process_ = true; |
---|
57 | // Row-center the data matrix |
---|
58 | utility::matrix A_center( A_.rows(), A_.columns() ); |
---|
59 | this->row_center( A_center ); |
---|
60 | |
---|
61 | // Single value decompose the data matrix |
---|
62 | std::auto_ptr<SVD> pSVD( new SVD( A_center ) ); |
---|
63 | pSVD->decompose(); |
---|
64 | utility::matrix U = pSVD->U(); |
---|
65 | utility::matrix V = pSVD->V(); |
---|
66 | |
---|
67 | // Read the eigenvectors and eigenvalues |
---|
68 | eigenvectors_ = U; |
---|
69 | eigenvectors_ .transpose(); |
---|
70 | eigenvalues_ = pSVD->s(); |
---|
71 | |
---|
72 | // T |
---|
73 | for( size_t i = 0; i < eigenvalues_.size(); ++i ) |
---|
74 | eigenvalues_[ i ] = eigenvalues_[ i ]*eigenvalues_[ i ]; |
---|
75 | eigenvalues_ *= 1.0/A_center.rows(); |
---|
76 | |
---|
77 | // Sort the eigenvectors in order of eigenvalues |
---|
78 | // Simple (not efficient) algorithm that always |
---|
79 | // make sure that the i:th element is in its correct |
---|
80 | // position (N element --> Ordo( N*N )) |
---|
81 | for ( size_t i = 0; i < eigenvalues_.size(); ++i ) |
---|
82 | for ( size_t j = i + 1; j < eigenvalues_.size(); ++j ) |
---|
83 | if ( eigenvalues_[ j ] > eigenvalues_[ i ] ) { |
---|
84 | std::swap( eigenvalues_[ i ], eigenvalues_[ j ] ); |
---|
85 | eigenvectors_.swap_rows(i,j); |
---|
86 | } |
---|
87 | } |
---|
88 | |
---|
89 | |
---|
90 | void PCA::process_transposed_problem(void) |
---|
91 | { |
---|
92 | process_ = true; |
---|
93 | // Row-center the data matrix |
---|
94 | utility::matrix A_center( A_.rows(), A_.columns() ); |
---|
95 | this->row_center( A_center ); |
---|
96 | |
---|
97 | // Transform into SVD friendly dimension |
---|
98 | A_.transpose(); |
---|
99 | A_center.transpose(); |
---|
100 | |
---|
101 | // Single value decompose the data matrix |
---|
102 | std::auto_ptr<SVD> pSVD( new SVD( A_center ) ); |
---|
103 | pSVD->decompose(); |
---|
104 | utility::matrix U = pSVD->U(); |
---|
105 | utility::matrix V = pSVD->V(); |
---|
106 | |
---|
107 | // Read the eigenvectors and eigenvalues |
---|
108 | eigenvectors_=V; |
---|
109 | eigenvectors_.transpose(); |
---|
110 | eigenvalues_ = pSVD->s(); |
---|
111 | |
---|
112 | // Transform back when done with SVD! |
---|
113 | // (used V insted of U now for eigenvectors) |
---|
114 | A_.transpose(); |
---|
115 | A_center.transpose(); |
---|
116 | |
---|
117 | // T |
---|
118 | for( size_t i = 0; i < eigenvalues_.size(); ++i ) |
---|
119 | eigenvalues_[ i ] = eigenvalues_[ i ]*eigenvalues_[ i ]; |
---|
120 | eigenvalues_ *= 1.0/A_center.rows(); |
---|
121 | |
---|
122 | // Sort the eigenvectors in order of eigenvalues |
---|
123 | // Simple (not efficient) algorithm that always |
---|
124 | // make sure that the i:th element is in its correct |
---|
125 | // position (N element --> Ordo( N*N )) |
---|
126 | for ( size_t i = 0; i < eigenvalues_.size(); ++i ) |
---|
127 | for ( size_t j = i + 1; j < eigenvalues_.size(); ++j ) |
---|
128 | if ( eigenvalues_[ j ] > eigenvalues_[ i ] ) { |
---|
129 | std::swap( eigenvalues_[ i ], eigenvalues_[ j ] ); |
---|
130 | eigenvectors_.swap_rows(i,j); |
---|
131 | } |
---|
132 | } |
---|
133 | |
---|
134 | |
---|
135 | // This function will row-center the matrix A_, |
---|
136 | // that is, A_ = A_ - M, where M is a matrix |
---|
137 | // with the meanvalues of each row |
---|
138 | void PCA::row_center(utility::matrix& A_center) |
---|
139 | { |
---|
140 | meanvalues_ = utility::vector( A_.rows() ); |
---|
141 | utility::vector A_row_sum(A_.rows()); |
---|
142 | for (size_t i=0; i<A_row_sum.size(); ++i) |
---|
143 | A_row_sum(i)=utility::vector(A_,i).sum(); |
---|
144 | for( size_t i = 0; i < A_center.rows(); ++i ) { |
---|
145 | meanvalues_[i] = A_row_sum(i) / static_cast<double>(A_.columns()); |
---|
146 | for( size_t j = 0; j < A_center.columns(); ++j ) |
---|
147 | A_center(i,j) = A_(i,j) - meanvalues_(i); |
---|
148 | } |
---|
149 | } |
---|
150 | |
---|
151 | |
---|
152 | utility::matrix PCA::projection(const utility::matrix& samples ) const |
---|
153 | { |
---|
154 | const size_t Ncol = samples.columns(); |
---|
155 | const size_t Nrow = samples.rows(); |
---|
156 | utility::matrix projs( Ncol, Ncol ); |
---|
157 | |
---|
158 | utility::vector temp(samples.rows()); |
---|
159 | for( size_t j = 0; j < Ncol; ++j ) { |
---|
160 | for (size_t i=0; i<Ncol; ++i ) |
---|
161 | temp(i) = samples(i,j); |
---|
162 | utility::vector centered( Nrow ); |
---|
163 | for( size_t i = 0; i < Nrow; ++i ) |
---|
164 | centered(i) = temp(i) - meanvalues_(i); |
---|
165 | utility::vector proj( eigenvectors_ * centered ); |
---|
166 | for( size_t i = 0; i < Ncol; ++i ) |
---|
167 | projs(i,j)=proj(i); |
---|
168 | } |
---|
169 | return projs; |
---|
170 | } |
---|
171 | |
---|
172 | |
---|
173 | utility::matrix |
---|
174 | PCA::projection_transposed(const utility::matrix& samples) const |
---|
175 | { |
---|
176 | const size_t Ncol = samples.columns(); |
---|
177 | const size_t Nrow = samples.rows(); |
---|
178 | utility::matrix projs( Nrow, Ncol ); |
---|
179 | |
---|
180 | utility::vector temp(samples.rows()); |
---|
181 | for( size_t j = 0; j < Ncol; ++j ) { |
---|
182 | for (size_t i=0; i<Ncol; ++i ) |
---|
183 | temp(i) = samples(i,j); |
---|
184 | utility::vector centered( Nrow ); |
---|
185 | for( size_t i = 0; i < Nrow; ++i ) |
---|
186 | centered(i)=temp(i)-meanvalues_(i); |
---|
187 | utility::vector proj( eigenvectors_ * centered ); |
---|
188 | for( size_t i = 0; i < Nrow; ++i ) |
---|
189 | projs(i,j)=proj(i); |
---|
190 | } |
---|
191 | return projs; |
---|
192 | } |
---|
193 | |
---|
194 | |
---|
195 | void PCA::calculate_explained_intensity(void) |
---|
196 | { |
---|
197 | size_t DIM = eigenvalues_.size(); |
---|
198 | explained_intensity_ = utility::vector( DIM ); |
---|
199 | double sum = 0; |
---|
200 | for( size_t i = 0; i < DIM; ++i ) |
---|
201 | sum += eigenvalues_[ i ]; |
---|
202 | double exp_sum = 0; |
---|
203 | for( size_t i = 0; i < DIM; ++i ) { |
---|
204 | exp_sum += eigenvalues_[ i ]; |
---|
205 | explained_intensity_[ i ] = exp_sum / sum ; |
---|
206 | } |
---|
207 | } |
---|
208 | |
---|
209 | |
---|
210 | double PCA::get_explained_intensity( const size_t& k ) |
---|
211 | { |
---|
212 | if( !explained_calc_ ) { |
---|
213 | this->calculate_explained_intensity(); |
---|
214 | explained_calc_ = true; |
---|
215 | } |
---|
216 | return explained_intensity_[ k ]; |
---|
217 | } |
---|
218 | |
---|
219 | |
---|
220 | }}} // of namespace utility, yat, and theplu |
---|