source: trunk/yat/utility/PCA.h @ 703

Last change on this file since 703 was 703, checked in by Jari Häkkinen, 16 years ago

Addresses #65 and #170.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 4.2 KB
Line 
1#ifndef _theplu_yat_utility_pca_
2#define _theplu_yat_utility_pca_
3
4// $Id: PCA.h 703 2006-12-18 00:47:44Z jari $
5
6/*
7  Copyright (C) The authors contributing to this file.
8
9  This file is part of the yat library, http://lev.thep.lu.se/trac/yat
10
11  The yat library is free software; you can redistribute it and/or
12  modify it under the terms of the GNU General Public License as
13  published by the Free Software Foundation; either version 2 of the
14  License, or (at your option) any later version.
15
16  The yat library is distributed in the hope that it will be useful,
17  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19  General Public License for more details.
20
21  You should have received a copy of the GNU General Public License
22  along with this program; if not, write to the Free Software
23  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
24  02111-1307, USA.
25*/
26
27#include "matrix.h"
28#include "vector.h"
29
30namespace theplu {
31namespace yat {
32namespace utility {
33
34  /**
35     Class performing PCA using SVD. This class assumes that
36     the columns corresponds to the dimenension of the problem.
37     That means if data has dimension NxM (M=columns) the number
38     of principal-axes will equal M-1. When projecting data into
39     this space, all Nx1 vectors will have dimension Mx1. Hence
40     the projection will have dimension MxM where each column is
41     a point in the new space. Also, it assumes that M>N. The opposite
42     problem is added in the functions: process_transposed_problem and
43     projection_transposed()...
44  */
45  class PCA
46  {
47  public:
48    /**
49       Constructor taking the data-matrix as input. No row-centering
50       should have been performed and no products.
51     */
52    explicit PCA(const utility::matrix&);
53 
54    /**
55       Will perform PCA according to the following scheme: \n
56       1: Rowcenter A  \n
57       2: SVD(A)  --> USV' \n
58       3: Calculate eigenvalues according to \n
59          \f$ \lambda_{ii} = s_{ii}/N_{rows} \f$ \n
60       4: Sort eigenvectors (from matrix V) according to descending eigenvalues\n
61    */
62    void process(void);
63
64    /**
65       If M<N use this method instead. Using the same format as before
66       where rows in the matrix corresponds to the dimensional coordinate.
67       The only difference is in the SVD step where the matrix V is used
68       after running the transposed matrix. For projections, see
69       projection_transposed() method.
70     */
71    void process_transposed_problem(void);
72
73    /**
74       @return Eigenvector \a i.
75    */
76    inline utility::vector get_eigenvector(size_t i) const
77      { return utility::vector(eigenvectors_,i); }
78
79    /**
80       Returns eigenvalues to covariance matrix
81       \f$ C = \frac{1}{N^2}A^TA \f$
82    */
83    inline double get_eigenvalue(size_t i) const { return eigenvalues_[i]; }
84
85    /**
86       Returns the explained intensity of component \a K \n
87       \f$I = \frac{ \sum^{K}_{i=1} \lambda_i }{ \sum^{N}_{j=1} \lambda_j }\f$ \n
88       where \f$N\f$ is the dimension
89    */
90    double get_explained_intensity( const size_t& k );
91
92    /**
93       This function will project data onto the new coordinate-system
94       where the axes are the calculated eigenvectors. This means that
95       PCA must have been run before this function can be used!
96       Output is presented as coordinates in the N-dimensional room
97       spanned by the eigenvectors.
98    */
99    utility::matrix projection( const utility::matrix& ) const;
100
101    /**
102       Same as projection() but works when used
103       process_transposed_problem().
104    */
105    utility::matrix projection_transposed( const utility::matrix& ) const;
106
107
108  private:
109    utility::matrix A_; 
110    utility::matrix eigenvectors_;
111    utility::vector eigenvalues_;
112    utility::vector explained_intensity_;
113    utility::vector meanvalues_;
114    bool process_, explained_calc_;
115   
116    /**
117       Private function that will row-center the matrix A,
118       that is, A = A - M, where M is a matrix
119       with the meanvalues of each row
120    */
121    void row_center( utility::matrix& A_center );
122
123    /**
124       Private function that will calculate the explained
125       intensity
126    */
127    void calculate_explained_intensity();
128  }; // class PCA 
129
130
131}}} // of namespace utility, yat, and theplu
132
133#endif
Note: See TracBrowser for help on using the repository browser.