 Timestamp:
 Feb 22, 2008, 10:31:22 PM (15 years ago)
 File:

 1 edited
Legend:
 Unmodified
 Added
 Removed

trunk/doc/Statistics.doxygen
r1109 r1125 303 303 304 304 \section Kernel 305 \subsection Polynomial Kernel305 \subsection polynomial_kernel Polynomial Kernel 306 306 The polynomial kernel of degree \f$N\f$ is defined as \f$(1+<x,y>)^N\f$, where 307 307 \f$<x,y>\f$ is the linear kernel (usual scalar product). For the weighted … … 314 314 \f$(1+<x,y>)^N\f$ is a proper kernel because taking a proper kernel to the 315 315 \f$Nth\f$ power yields a new proper kernel (see any good book on SVM). 316 \subsection {Gaussian Kernel}316 \subsection gaussian_kernel Gaussian Kernel 317 317 We define the weighted Gaussian kernel as \f$\exp\left(\frac{\sum 318 318 w_xw_y(xy)^2}{\sum w_xw_y}\right)\f$, which fulfills the conditions
Note: See TracChangeset
for help on using the changeset viewer.